
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

Behavioral Analysis of Insider Threat: A
Survey and Bootstrapped Prediction in

Imbalanced Data
Amos Azaria, Ariella Richardson, Sarit Kraus, and V.S. Subrahmanian

Abstract—The problem of insider threat is receiving increasing attention both within the computer science community as well as
government and industry. This paper starts by presenting a broad, multidisciplinary survey of insider threat capturing contributions
from computer scientists, psychologists, criminologists, and security practitioners. Subsequently, we present the BAIT (Behavioral
Analysis of Insider Threat) framework, in which we conduct a detailed experiment involving 795 subjects on Amazon Mechanical
Turk in order to gauge the behaviors that real human subjects follow when attempting to exfiltrate data from within an organization.
In the real world, the number of actual insiders found is very small, so supervised machine learning methods encounter a
challenge. Unlike past works, we develop bootstrapping algorithms that learn from highly imbalanced data, mostly unlabeled,
and almost no history of user behavior from an insider threat perspective. We develop and evaluate 7 algorithms using BAIT and
show that they can produce a realistic (and acceptable) balance of precision and recall.

Index Terms—computer security, behavioral models, insider threat

F

1 INTRODUCTION

Insider threat refers to the threat posed to organiza-
tions by individuals who have legitimate rights to
access the internal system of an organization. In a
detailed study [1] of 23 insider threat incidents in
the banking and finance sector between 1996 and
2002 which was carried out jointly by the US Secret
Service and CERT (at Carnegie-Mellon University),
the authors found that insider threat events included
fraud, theft of intellectual property and attempts to
sabotage the organization’s network. The same or-
ganizations conducted a similar study focusing on
36 incidents in the government sector during the
same time frame that involved document fraud, finan-
cial fraud (embezzlement), fraud using a computer,
theft of confidential information and/or sabotage, and
more. CERT’s insider threat page, http://www.cert.
org/insider threat/, presents an excellent summary
and several reports detailing various kinds of insider
threat. In a similar vein, [2], quoting a US Justice
Department survey, states that 74% of all cyber-theft

• Amos Azaria is with the Machine Learning Department, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
E-mail: {azariaa}@cs.cmu.edu; Ariella Richardson is with the Depart-
ment of Industrial Engineering at Lev Academic Center, Jerusalem
91160, Israel, E-mail: {richards}@jct.ac.il; Sarit Kraus is with both
the Computer Science Department at Bar Ilan University, Ramat
Gan 52900 Israel, and with UMIACS at the University of Maryland,
College Park, MD 20742, E-mail: {sarit}@umiacs.umd.edu; and V.S.
Subrahmanian is with both the Computer Science Department and
UMIACS at the University of Maryland, College Park, MD 20742
E-mail: {vs}@cs.umd.edu.

First Decision Date: July 21, 2014 Received Date: Feb 2, 2014 Revised
Date(s): Nov 20, 2014 Accepted Date: Nov 20, 2014 Manuscript number:
TCSS-2014-02-0001

within organizations was carried out by insiders and
that 40% of all cyber-incidents reported by 36,000
US businesses involved insiders. According to [3],
“personal records harvested from databases can be
sold on the open market for 4 − 8£ per record.”
Thus, an insider who steals a million data records
from a credit card, insurance or health care company
can potentially make himself over $10M ! Fyffe [3]
describes a US Secret Service operation that busted
a criminal network dealing in information on 1.7M
credit cards.

Detecting malicious insiders poses a huge chal-
lenge for many reasons. First, the number of mali-
cious insiders who have been discovered within a
given organization is usually very small, maybe just
a handful over a decade. From the perspective of
machine learning algorithms, this provides a highly
imbalanced data set (over 99.9% of honest users, and
usually well under 0.1% of malicious insiders) from
which to automatically learn [4]. Learning from an
imbalanced dataset poses a great challenge. Machine
Learning Algorithms usually assume the data is bal-
anced. Using imbalanced data often results in very
high accuracy for the majority class, and very low
accuracy for the minority class. In the case of insider
threats this type of result is very problematic, as we
are interested in detecting the minority class. Second,
there is no publicly available comprehensive data set
for testing purposes — companies are reluctant to
share such data and security organizations cannot.
Thus, even training data from real-world sources is
hard to come by. Third, even the little training data
that is publicly available is flawed — for instance, we
know of training data in which the honest users’ data

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2

is real, but the “malicious insiders” are synthetically
injected [5] — moreover, in such cases, the injected
insiders are often based on past attacks, making the
implicit assumption that future attackers will attack
in the same ways that past attackers used. Thus, even
the data that was previously claimed as “real” suffers
from serious flaws. One of the fundamental flaws in past
studies is that there have been almost no behavioral studies
in which real world human users’ behavior as potential ma-
licious insiders has been carefully studied. A deep human
study that seeks to understand how people within an
organization might try to exfiltrate data in the future is
critical if we are to prevent such attacks in the future.
The only exception we are familiar with is a small
scale experiment reported in [6] that we will discuss
in section 2.3.2. The fourth challenge that complicates
insider threat detection is that the malicious behavior
of the insider is only a small portion of the subject’s
actions. The malicious actions take place alongside
other normal behavior that an insider performs as part
of his job. This enhances the imbalanced nature of the
dataset, since not only are there a small number of
malicious subjects, but for these subjects only a small
portion of the behavior is malicious.

The goal of this paper is two-fold. First, we give a
detailed and broad overview of techniques to detect
malicious insiders. Our survey is different from a 2008
survey [7] in that our survey covers a broad swath of
multidisciplinary territory — insider threat has been
studied over the years by psychologists, criminolo-
gists, electrical engineers, and of course, computer
scientists. We try to cover all of these efforts in our
survey. In addition, we also cover more recent work
that was published after the 2008 survey of [7]. Once
we complete our survey, we present BAIT (Behavioral
Analysis of Insider Threat), in which we develop
bootstrapped algorithms that try to learn separators
between malicious insiders and honest users under
the following conditions: (i) the training data sets are
highly imbalanced, (ii) there is very little training data,
(iii) the attacks are carried out by real humans similar
to employees in an organization without regard to
past attacks reported in the literature, and (iv) The
attacks are performed alongside other normal behav-
ior.

In order to address these new scenarios, the com-
bination of which has not yet been reported in the
literature, we present the BAIT framework. In BAIT,
we considered 7 algorithms in total (5 that build on
top of Support Vector Machines [8] and 2 that leverage
the Multinomial Naive Bayes algorithm). Of these 7
algorithms, 2 are completely obvious, but the remain-
ing 5 represent different ways of generating a larger
and more balanced training set by “bootstrapping” on
top of a very imbalanced and small training set. In
order to test out our algorithms, we designed a BAIT
game. The game was tested on Amazon Mechanical
Turk and used a set of 795 carefully vetted users

from the USA. Past work on insider threat detection
has ofteny used real data from an organization to
show organizational activity, but injected threat data
artificially. This was done in DARPA’s ADAMS project
[9], in ELICIT[6], and in related efforts. In contrast,
our work complements this exactly — our injection
of threat is real, but we were unable to test it within
a real organization.

The game mimicked the “insides” of an organiza-
tion and assigned all users a role (malicious insider vs.
honest user) as well as a set of possible actions they
can take. These actions are similar to those in other
studies in the literature. Based on these, we define
a set of 28 features that can be used by our SVM-
based and Naive-Bayes-based methods. We evaluate
the efficiency of the 7 BAIT algorithms via a series of
experiments in order to determine which algorithm
exhibits the best accuracy. As usual, precision and
recall tradeoff against one another, but our best algo-
rithm is able to deliver a recall of 0.6 and a precision of
0.3 (for a total F-measure of 0.4). This means that we
were able to correctly identify 60% of the malicious
insiders, while guaranteeing analysts that about one
of three suspects presented to them would indeed be
a malicious insider. However, if we wish to make a
different tradeoff in order to increase recall (which is
a major factor), then another one of our algorithms
yields 70% recall, but only a 7% precision. This means
that if we are willing to live with only about 1 in 15
suspects being a true malicious insider, then we can
identify an extra 10% of malicious insiders. Whether
this tradeoff is worth it in a real application (e.g.
within an FBI-like organization with 35K+ employees)
depends upon the resources available to investigate
insider threat. We suspect they would rather have a
60% recall and a 30% precision, meaning that about
one of three individuals the system flags (and that
they subsequently investigate manually) is truly ma-
licious.

We also present findings about behaviors of users
that are statistically significant indicators of being
insider threat risks — our findings on the behaviors
that distinguish between malicious insiders and be-
nign insiders include some new behavioral results and
independently validate some prior results of other
researchers. In the case of two findings of other re-
searchers, our independent experiments leave open
questions: specifically, while we noticed trends sim-
ilar to some prior reports, they were not statistically
significant in our study.

2 RELATED WORK

This section will survey methods from various do-
mains that consider the insider threat detection meth-
ods and challenges. We begin with a selection of
studies which motivated the study and suggest fea-
tures to consider for insider threat detection, such

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 3

as system usage, user behavior etc. We then proceed
to describe psychological and social theories, which
profile malicious insiders, and propose systems that
use these profiles for insider threat detection. This
is followed by a discussion on anomaly detection.
Although many of the systems using anomaly detec-
tion are aimed at external threat detection rather than
insider threat detection (because of the shortage of
data available), these systems may inspire the insider
detection problem. Honeypots and Graph-based sys-
tems are commonly used for threat detections, and are
surveyed next. Finally Game theory approaches are
presented. Most of the studies surveyed are presented
briefly; a small number of studies that we found to be
closest to our work are presented in detail.

2.1 Motivating Studies
Magklaras and Furnell [10] present an insider threat
prediction tool which performs three major tasks:

1) Monitoring aspects of file and directory location in
order to account for the fact that certain types
of misuse of a computer system are connected
to placing certain files in certain directories.

2) File content analysis in order to check for certain
patterns such as virus signatures within files.

3) File integrity checks in order to check if a file has
been compromised, e.g. system files or boot files.

They then develop Evaluated Potential Threat (EPT)
metrics which characterize user behavior features
such as their knowledge of a file system, the content
of files in their workspace and the way in which
they interact with the network (e.g. histogram of
traffic types they receive and/or send). However, no
empirical results are reported on the effectiveness of
these metrics.

Myers et al. [11] state that insider threats involve
two scenarios:

1) Unauthorized use of privileges in which a malicious
insider tries to access data that he is not autho-
rized to access (e.g. accessing compartments of
data that are not relevant to his mission) and/or
uses authorized resources in inappropriate ways
(e.g. emailing a file he is authorized to access to
a person who may not be authorized to see it).

2) Automated insiders such as bots, programs that
map the internal network and probes that try to
identify weaknesses in the system.

Jabbour and Menasce [12] propose the Insider
Threat Security Architecture (ITSA) to identify and
mitigate insider threat. They present a hypothetical
example of a database administrator of an insurance
company who has “gone bad” and is trying to steal
money from his employer. To do this, he injects a
bogus $100K claim into the database, but the security
policy in force prevents the payment of the claim
because all claims of $100K or more must be audited
according to the policy. As a consequence, the DBA

changes the claim to $99,999 (or a similar number) and
then deletes all traces of this change from the logs. In
the ITSA framework, however, there is a “defense”
layer that records the DBA’s actions and would alert
some appropriate entity in the organization of the
DBA’s attempt to inappropriately change the status
of the claim.

Bishop et al. [13], [14] propose a graduated notion
of insiderness. They introduce a hierarchy of policy
abstractions, and argue that the discrepancies between
the different layers of abstraction are useful for identi-
fying insider threats. They also present a methodology
for analyzing the threat based upon these definitions.
They introduce Attribute Based Group Access Control
that allows any attributes to define a group. The
attributes that they study include job function (e.g.,
Help Desk) and building access (e.g., after 5pm). They
applied this to the insider threat by defining groups
based on access capabilities, and used those groups to
identify users with a high level of threat with respect
to high-risk resources. Again, no empirical studies
are reported on the effectiveness of the proposed
methodology.

Hunker and Probst [15] present an overview of
definitions of insiders and insiders threats and discuss
a number of approaches from the technological, the
sociological, and the socio-technical domains. Their
main conclusion is that tackling insider threats re-
quires a combination of techniques from these do-
mains in order to detect and mitigate insider threat.

Sinclair and Smith [16] discuss the challenges of
prevention of attacks using access control. In partic-
ular, they discuss the difficulty to balance between
allowing the members of organizations in financial,
health care, and other enterprise environments to
fulfill their tasks successfully and efficiently and the
deployment of access control technology to prevent
insider threats that interfere in their activities. They
conclude by saying that prevention complements (not
replaces) detection efforts since better prevention can
restrict the problem space that detection must address.

2.2 Psychological and Social Theories
In this section we first present some studies that
describe which indicators are likely to appear in mali-
cious insiders. We then survey tools and systems that
detect insider threats using psychological and social
theories.

2.2.1 Behavioral Indicators
Schultz [17] defines five behavioral indicators that are
apparently predictive of an insider seeking to attack
a system.

1) Deliberate markers refer to the fact that various
users may engage in deviant behavior online.
They provide an example of a disgruntled em-
ployee flooding his supervisor’s mail box with
threatening emails from an anonymous source.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 4

2) Meaningful errors in which a user makes mis-
takes. For example, a user trying to download
various proprietary files may erase relevant log
files, but may forget to erase relevant error logs
which may contain traces of errors the user
made (e.g. mistyped access command) that can
help identify him later.

3) Preparatory behavior in which a user might use
a range of system level commands such as
nslookup, whois, and so forth to perform surveil-
lance on a system before carrying out an insider
attack.

4) Correlated usage patterns in which a user might
exhibit a certain behavior on multiple loosely
coupled sub-networks or sub-systems which
separately do not show a suspicious pattern, but
collectively do show a suspicious pattern.

5) Verbal behavior in which a user uses hateful
language about a supervisor or a company in
general.

6) Personality traits such as introversion are as-
sumed to be correlated to the likelihood of a user
posing an insider threat.

In a similar vein, Wood [18] tries to identify various
aspects of users who pose an insider threat. These
users are assumed to have the skills needed to attack
the system and to be risk averse, usually working
on their own — this last aspect is similar to the
introversion criterion identified by Schultz [17]. Wood
[18] goes on to say that people who mount attacks
either have a character defect or work for a competing
organization. Warkentin and Willison [19] point out
that most paper about insider threat do not consider
the behavior of the attacker. In a related paper, Willi-
son and Warkentin [20] propose an “Organizational
Justice” model which seeks to understand how vari-
ous corporate factors can shape feelings of disgruntle-
ment amongst employees. Disgruntled employees are
frequently mentioned as potential insider threats [5],
[21].

2.2.2 Sytems using Psychological and Social Theo-
ries
An excellent paper by Greitzer and Frincke [22]
presents a comprehensive view of psychological ap-
proaches to detecting insider threat, together with
a computational approach that uses Bayesian nets.
Based on many years of work, they identify the
following factors as predictors of insider threat.

1) Disgruntlement. As mentioned earlier, disgrun-
tled employees can often become malicious in-
siders as in the case of Shakuntala Singla, a
former US Coast Guard employee who in 1997,
masqueraded as another user and crashed sev-
eral Coast Guard computers[pages 182-183][23]
after becoming disgruntled that her complaints
about sexual harassment were not being taken
seriously.

2) Accepting criticism. This is related to disgruntle-
ment. Users who may not accept criticism of
their behavior, work ethic, or quality of work
can quickly become disgruntled.

3) Anger management. Users who end up getting
very angry, sending abusive emails, using foul
language both in a verbal and a written (e.g.
email or SMS) setting can end up eventually
becoming insider threats.

4) Disengagement. A user who does not seem to
interact much with others in the organization
and becomes withdrawn also is believed to pose
an insider threat risk.

5) Disregard for authority. A user who ignores
normal, even non-computer related workplace
rules, obviously poses a risk. A person who
ignores one set of rules may ignore rules about
computer use.

6) Performance. Clearly, people who have received
poor performance appraisals can end up with an
incentive to become malicious insiders.

7) Stress. Users who are under stress (e.g. a divorce,
financial stress, health related stress) can fall
prey to third parties who might leverage their
psychological vulnerabilities in order to turn
them into malicious insiders.

8) Confrontational Behavior. This is similar to the
anger management category. Users who are
overly aggressive are usually aggressive because
they have some level of dissatisfaction with
things or individuals in their organization. Thus,
confrontational behavior might be a symptom of
disgruntlement.

9) Personal issues. A user who is unable to separate
his/her personal life from their work life may
have personal problems causing stress. Thus,
this category is related to the stress category
listed above.

10) Self-centeredness. A user who only thinks about
his needs, not the needs of his colleagues at
work, is perhaps not going to spend much time
thinking about his company’s needs either ex-
cept in so far as they support achieving his
own goals. Such a user may be tempted by
outside organizations that seek to turn him into
a malicious insider by offering him incentives
that meet his needs (e.g. money, sex, etc.).

11) Lack of dependability. This corresponds to the case
where a user makes promises, but is unable to
keep them. The rationale here is that if the user
cannot keep promises made to his colleagues
(e.g. to finish a project on time), then his level
of trust within the organization is not high.

12) Absenteeism. A user who is chronically absent or
late exhibits a poor work ethic and may not care
much about the company.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 5

It is important to note that these 12 “predictors” are
not likely, by themselves, to be good predictors of
insider threat because they would induce very high
false positives. For instance, a person who is stressed
because of issues with a spouse is unlikely to turn
into a malicious insider at his work. Therefore, these
indicators merely serve as “signals” of possible future
wrongdoing, together with the knowledge that most
likely they are wrong.

Based on these intuitions, Greitzer and Frincke [22]
proposed a Bayesian net-based predictive model. The
details of the model are not spelled out (and we
will discuss other Bayesian models due to [5] later in
this paper). The authors report that they conducted
two types of experiments. In the first, they compared
the results of the Bayesian model with the above
indicators using two human resources experts who
served as adviser to the development of the model
and obtained an R2 value of 0.94, showing an excel-
lent fit. They also asked 3 additional human resources
experts to validate the model on a set of 50 cases,
but here, the R2 value was much lower, 0.29. They
also tested using synthetic data for 100 employees by
injecting “bad guys”. Their Contingency Coefficient
Analysis yielded a C value of 0.76, indicating a strong
correlation between their predictions and the ground
truth. In a follow-up experiment [24], they asked
10 experts to rank 24 cases according to predictors.
The inter-rater agreement on the 24 scenarios was
high. Then they evaluated the Bayesian model using
a round robin procedure, leaving out the 24 cases
from one rater for testing while the 24 cases from
each of the other nine raters were used in the Genie’s
expectation maximization algorithm in order to learn
the probabilities in the conditional probability tables
in the network. The performance of the Bayesian
model was R2 = 0.598 which was similar to that of
the Linear Regression method (R2 = 0.592) and the
Artificial Neural Network R2 = 0.606. Nevertheless,
the Bayesian model has many advantages over the
other models including the ability to work with miss-
ing values.

While these experiments represent an excellent first
step, they leave several questions unanswered. First,
how did they determine the values of the 12 signals
listed by them for each user? One would imagine that
some of these signals would require natural language
processing techniques or video processing techniques,
but the source of this data is not clearly revealed
in their paper. Another is the nature of the study.
All experiments used synthetic data with no real
human subjects, so it is hard to say how well these
numbers will hold up in the real world. Nonetheless,
the paper presents very important signals that need
to be monitored in order to ensure that potential [22]
malicious insiders are quickly identified.

In another psychologically oriented paper, Theo-
haridou et al. [25] present several different theories

from criminology and related social science fields on
the behaviors of insiders. In particular, they present:

• General Deterrence Theory. This theory in crimi-
nology suggests that people make decisions on
the value of the perceived utility of their ac-
tions and the costs involved, not unlike work
in game theory. The focus is on deterrence. A
study by Straub and Welke [26] suggests that
misuse of computers by insiders can be achieved
by a Security Action Cycle consisting of 4 steps.
In the Deterrence step, education and outreach
inform all of the penalties for misuse. In the
Prevention step, the goal is to take measures (such
as with appropriate authentication mechanisms)
to prevent computer misuse. In the Detection step,
sophisticated algorithms are used to detect abuse
while it is occurring (such as the anomaly de-
tection algorithms listed below). In the Remedies
step, actions are taken against offenders.

• Social Bond Theory. This theory suggests that the
likelihood that someone will engage in criminal
misuse of computational facilities depends upon
his social bonds (i.e. with whom he associates).
The logic is that a person is more likely to be
a criminal if he associates with a lot of criminals
[27]. The authors state that capturing social bonds
can be done by monitoring a person’s interest in
his environment (e.g. colleagues, work projects),
his commitment to achieving social status (e.g.
that of being a valued colleague) and his involve-
ment in normal activities in which most people
are engaged (such as spending time with his
family and kids, playing sports).

• Social Learning Theory. This theory, similar to that
above, says that a person is more likely to commit
crimes if he associates with those who do so [28],
[27], [29].

• Theory of Planned Behavior. This theory [30] dis-
tinguishes between intentions (which occur first)
and execution. It says that a person’s intentions
are shaped by his view of how a given behavior
will be viewed by others, subjective norms which
are social factors that may support or inhibit a
user from behaving in a certain way, and control
factors which look at whether the person believes
that he can control how his behavior will occur
and whether he can realize his objectives. In the
execution phase, the user waits for an opportu-
nity to act upon his intentions.

• Situational Crime Prevention. This theory states
that crimes (cyber crimes or others) occur when
a person has both motive and opportunity —
so by either removing motive or by denying
a malicious user an opportunity, we can help
prevent crime [31].

In the case of insider threats within organizations,
much of this work is applicable. For instance, con-

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 6

sider the case of Shakuntala Singla, a former US
Coast Guard employee who in 1997, masqueraded
as another user and crashed several Coast Guard
computers[pages 182-183][23]. She later said she did
not expect her actions to have the degree of impact
that they had. Nonetheless, many of these theories
may be difficult to realize in certain insider threat
scenarios. For instance, CIA spy Aldrich Ames and
FBI spy Robert Hansen would probably not have
been caught by any of the first three theories above.
The situational crime theory is a good theory but its
realization in practice in a cyber-security malicious
insider threat setting poses a challenge — denying
attackers the opportunity they seek has been the holy
grail of computer security in general, but has been
impossible to achieve.

A related highly technical approach of Martinez-
Moyano et al. [32] to insider threat detection classifies
all actors in an organization into three categories —
information workers, security officers, and malicious
insiders. The goal of this work is to identify malicious
transactions, not users. The authors define a “base”
rate to be the percentage of employees who are mali-
cious insiders and decision thresholds that decide the
level of suspicion in a user’s behavior that triggers an
alert. The authors use Signal Detection Theory or SDT
[33], [34] from psychology to learn curves in which
the x-axis represents the level of suspiciousness of a
threat and the y axis represents a probability that a
random person will be a true threat, given that level
of suspicion. The authors argue that this is a bell
curve. They then plot a similar curve where the y-axis
represents the probability that a random person is not
a threat, given that the suspicion score says he is not a
threat. This is also asserted to be a bell-shaped curve.
The distance between the means of these two normal
distributions is then a measure of how accurate the
classifier is.

Based on this idea, Martinez-Moyano et al. [32] set
up the problem as a standard feedback control system
in which the system is assumed to be in a state x(t) at
all times t. This state is a vector. In addition, there are
some extraneous events u(t) occurring at time t (e.g.
noise in the system). If x(t0) denotes the initial state
vector, then they capture the derivative dx

dt as some
function of x(t), u(t) and x(t0). Given a computational
event e = (e1, . . . , en) where the ei’s are attributes of
the event, they assume that the information workers
are the ones who will “turn in” suspicious trans-
actions. To model this, they associate a weight wi

with each attribute, measuring the competence of the
workers in asessing those arguments. The authors
then state that they assume information workers will
flag the transaction e as suspicious if the weighted
sum Σn

i=1wiei exceeds some threshold. In this case,
an audit may be conducted by the organization. The
paper goes on to add more sophisticated estimates
such as the attention span of information workers and

their ability to remember things to the model. Based
on this, they state, like the work described earlier in
General Deterrence Theory above, that information
workers (and security officers) try to maximize utility
while minimizing cost. In this case, the costs are
those associated with false positives and the utility
is captured in terms of true positives.

Martinez-Moyano et al. [32] report the results of de-
tailed simulation experiments in which they assume
that malicious insiders first launch probes to carry out
attacks, consistent with the behaviors observed in a
prior study conducted by the US Secret Service and
CERT [1]. These simulations look at three scenarios
— perfect information where the malicious user’s
knowledge of the system is very good, alignment
training where the organization improves its security
training (to all people in the organization) — with this,
in their simulations, malicious insiders never went
into attack mode. In the third policy they tested, called
consistency training, they assumed that information
workers would respond consistently to security cues
(perhaps through additional training). Here, as ex-
pected, the attack rate went down.

These simulations shed important light on the types
of security policies that may apply to humans in an
organization but not to the network or hosts them-
selves. However, from the perspective of using this
model to deploy an “online” malicious insider threat
detection algorithm, the work has some challenges to
overcome. First, it is unclear how to get good quan-
titative judgments of the level of saving (the weights
wi) that users in the organization have in detecting
cyber-threats. Second, in many real-world malicious
classified environments, only a small number of peo-
ple can see what a given user is doing because of
“compartmentalization” restrictions. Third, it is hard
to tell whether the linear threshold model (Σn

i=1wiei
exceeds some threshold) used to flag someone as a
malicious insider actually works. What should the
threshold be? What are the false positive and false
negative rates? Nonetheless, this work offers impor-
tant value in understanding how external policies
within an organization can lead to better cyber-health
for the organization.

In a recent paper [35], Martinez-Moyano et al. ex-
pand their previous work on the behavioral aspects of
insider threat identification focusing on the learning
process of security officers and decision-makers. They
explicitly say that the proposed model is not thought
of as a substitute for multiple layers of automated se-
curity mechanisms. Their goal is to provide additional
considerations and processes whose identification by
security officers and decision-makers may be impor-
tant to mitigating the risk of the defense mechanisms
being compromised as a result of novel and not-yet-
fully-known threats and attacks. The proposed learn-
ing model was evaluated by 12 experienced decision
scientists who played the role of security officers

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 7

over a two-week period facing synthetic data. The
results showed that the model accurately captures
the variability of the human-generated results without
bias. However, further work is necessary to use the
proposed model for training security officers in order
to improve their performance in identifying malicious
insiders.

Probst and Hunker [36] present a thought-
provoking discussion on the difficulty of estimating
the risk of insider threats. They state that the expected
loss function from the deployment of a counter-
insider threat policy is the probability of an insider
threat to occur, times the probable damage of a certain
amount or type, times the probability that the policies
imposed will be unsuccessful in blocking that threat.
Policy and security officials can imagine all sorts of
threats, but estimating the relevant probabilities is ex-
tremely difficult. Attempting to counter each possible
threat (assuming they will occur with probability 1)
is very costly. Furthermore, they believe that for more
complex trust relationship-based insider threats, the
policies deployed to counter the threat may not be
effective (i.e., the probability the probability that the
policies imposed will be unsuccessful in blocking that
threat is relatively high). Based on their observations,
they conclude that it is important to understand how
better to change the motivations of insiders, instead of
merely focusing on controlling and monitoring their
behavior.

2.3 Anomaly Detection Approaches

A number of approaches to insider threat detection
try to build a model of normal behavior and then
attempt to detect anomalies. These include a broad
overview of anomaly detection methods for external
threats (often termed intrusion detection) by Patcha
and Park [37]. Detection of external threats is different
to insider threats, as the threat is easier to detect. For
example, by looking for infiltrations to the system,
or finding other unusual behavior as we would
expect an external intruder to behave differently from
insiders. Insider threat poses more of a challenge,
since the malicious user has access to internal systems,
can spread his malicious actions among legitimate
actions etc. However some of the methods used for
external threats can be used or adapted to insider
threats, and are therefore mentioned here. Anomaly
detection is based on the assumption that activity
deviating from normal activity will raise an alarm.
Anomaly detection is more beneficial for detecting
insider attacks than previously proposed signature
systems assuming the insider is a masquerader, or has
deviated from his regular behavior. Anomaly detec-
tion techniques include: statistical anomaly detection,
machine learning based anomaly detection and data
mining methods. One drawback of anomaly detection
is that the system must define ‘normal’ activity; this is

a challenging task. Although hybrid systems that in-
corporate anomaly detection with signature detection
would seem to produce a much stronger detection
system, the resulting hybrid systems are not always
better. Patcha and Park [37] mainly described methods
that focus on the external threat problem in thier sur-
vey. Insider threats are described by Patcha and Park
as a great challenge not yet solved. In this paper, we
focus on two of the anomaly detection approaches so
as to give a flavor of how these approaches work — an
outlier detection based approach, and a classification
based approach.

2.3.1 Insider Threat Detection via Supervised Outlier
Detection
In this section, we discuss the work of Liu et al.
[38] who operate at the operating systems level by
adapting methods used to detect external threat to
the case of insider threat. They track user activities at
the operating systems level for two reasons. First, by
monitoring actions at the OS level, they ensure that all
activity of any user is tracked, not just user activity
detected by higher level entities such as application
logs. Second, by tightly integrating insider threat
detection with the operating system, there is less
chance that the insider threat detection engine itself
gets compromised by a smart adversary. They then
proceed as follows. They define a set of system level
“features”. They define three sets of features using n-
grams, histograms, and parameter-based approaches.
Once the features are defined, they use a training set
of known “normal” events in conjunction with a k
nearest neighbor algorithm to detect outliers. We will
describe their approach in greater detail below.

First, the basic types of events captured by Liu et al.
[38] involve system calls generated by the following
types of higher level activities: browse, db admin,
email, misc, open office, software dev. In addition,
the authors identify 7 types of exploits. These exploits
include:

1) privilege escalation in which the user tries to
gain root access using any available privileges
and local applications;

2) removable media in which the user tries to copy
data and files to a removable device such as a
hard drive, USB stick or CD;

3) export via email in which the user tries to email
data;

4) change file extension in which the user tries
to change file extensions in order to trick any
network monitoring code;

5) encipher, decipher operations in which the user
tries to computationally modify a secret docu-
ment;

6) unusual search in which the user looks for doc-
uments he is not authorized to access;

7) malware installation in which the user tries to
install malware on the system.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 8

The features defined by Liu et al. [38] involve three
types of high level features: n-grams, histograms and
a parametrized system call information.

2.3.1.1 n-grams: An n-gram is merely a se-
quence of n system calls. For example, a 4-gram is
a sequence of system calls of length 4. An n-gram
record is any single n-gram. The authors generate n-
grams via a sliding window - for instance, in a system
call log of calls c1, . . . , cr, the first n-gram consists
of c1, . . . , cn, the next n-gram consists of c2, . . . , cn+1,
the next consists of c2, . . . , cn+2, and so forth. The
authors leverage the use of n-grams from prior work
of Hofmeyr et al. [39] on identifying external security
threats, and suggest using n = 5 based on their
experience and tests.

2.3.1.2 Histograms: Leveraging prior work of
Liao and Vemuri [40], for the external threat problem,
the authors first create a “window size” (e.g. 30 calls
is suggested). For each window wi, they count the
number of each system call type executed within that
window. The authors then overlap windows (they
suggest an overlap of 5). Thus, suppose once again
that our system call log sequence is c1, . . . , cr. In
this case, the first window w1 consists of the calls
c1, . . . , c30. Because w2 must overlap with the last 5
calls in w1, w2 consists of c26, . . . , c55. w3 then consists
of c51, . . . , c80, and so forth.

2.3.1.3 Parameter-based system calls: The previ-
ous two paragraphs merely track the “type” of system
calls (e.g .“open” a file) but do not keep track of the
parameters invoked by the system call (e.g. the file
name). In this class of features, the authors keep track
of the exact types of parameters used. They then keep
track of the number of system calls (with associated
parameters) of each type. They provide an example
where the system call is “open” with parameters

(java,30,homeuser1aaaasensB.class,438,32768)
corresponding to the Process Name, the return code,
the full path name, the file create mode, and the file
mode.

In the next phase, Liu et al. use these features in
order to identify anomalies. They do this by first using
a training set TS consisting solely of normal (non-
malicious) records of user activity (an n-gram and a
window histogram corresponding to a user record).

For the validation set V S, they find the distance
between a record r ∈ V S and the records in TS.
The authors choose the neighbors which are at the
kth greatest distance from the records in the training
set. In the case of the n-gram approach, they use Ham-
ming distance to measure the distance between two n-
grams. In the case of the histogram-based representa-
tion, the distance between two records (r1, . . . , rn) and
(r′1, . . . , r

′
n) is simply set to Σn

i=1|ri − r′i|. For the case
of the parameter-based system call representation, for
any two calls, they simply calculate the number of
parameters on which the two calls vary (this is the
Hamming distance between the two records).

Liu et al. conduct experimental evaluation using
synthetic data and present ROC curves showing that
the n-gram approach does not do very well. How-
ever, the histogram approach does better, while the
parameter-based methods perform the best. Note that
this work identifies anomalous records, not anomalous
users. To find anomalous users, one would presum-
ably need to aggregate the levels of anomaly exhibited
by the different system calls generated by that user.

Liu et al. extended their work in [38] and tried
applying their methods for external threat detection
to insider threats [41]. They found that the transition
does not work well and suggest that this may be a
result of different assumptions made in the different
domains. For example external threats are assumed
to be outliers when compared to normal activity,
whereas insiders may perform some normal activity
and some malicious activity and be harder to de-
tect. This comparison further motivates our work by
indicating that simply using methods developed for
external threats is not sufficient for insider threats, and
new methods must be considered.

2.3.2 The ELICIT System
Maloof’s ELICIT system focuses on detecting insid-
ers within an organization who violate the “need
to know” principle. In most security organizations
(such as the FBI), each user has a security clearance
level. These may include clearance levels like secret,
top secret as well as top secret sci where the sci
stands for “Sensitive Compartmented Information”.
SCI clearances allow a user to see certain “compart-
ments” of information but not other “compartments.”
The “need to know” principle requires users to only
look at information they need to look at, not go
snooping. Maloof and Stephens [5] mention the case
of an FBI analyst who was arrested for download-
ing/printing information about the Philippines that
he had no “need to know.” Recent episodes involving
Bradley Manning (who leaked information to Wik-
ileaks) and Edward Snowden (who did the same) also
involve their downloading classified information for
which they had no “need to know.” ELICIT was tested
on a real-world corporate intranet during a 284 day
period involving 3900 users. A red team generated
synthetic insiders on the basis of attacks that had
been carried out in the past by real world spies such
as Aldrich Ames, Robert Hansen, and other. They
conducted experiments with this large data set and
ended up with an ROC curve with an AUROC (area
under ROC curve) of 0.92 which is amazing.1 Because

1. A ROC (Receiver Operating Characteristic) curve is a classic
way of measuring the accuracy of a classification algorithm — in
this case, the algorithm that classifies people as “posing a threat” vs.
“not posing a threat.” A ROC plots the false positive rate on the x-
axis and the true positive rate on the y-axis. The area under the ROC
curve (or AUROC) is a measure of the accuracy of a classification
algorithm — the maximal possible area is 1, so an AUROC of 0.92
is outstanding.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 9

of the excellent results achieved by ELICIT, we will
elaborate on the techniques used therein. ELICIT uses
four steps:

1) Data collection. In the first step, ELICIT trans-
forms network traffic packet-level data (that the
system monitors via sensors placed within a
corporate intranet) into what the authors call
“information use” (or IU) events. This transfor-
mation of raw packets into IU events is done
via programs called packet decoders. In addition
to the packet level data, ELICIT also contains
contextual information (such as where a person’s
office is, where printers are located, etc.). In
addition ELICIT tries to attribute events to actual
users on the system.

2) Anomaly Detectors. In this critical stage, ELICIT
developed 76 “detectors”. A detector tries to
anticipate one type of activity that an attacker
might engage in that is anomalous. These de-
tectors involve three techniques — rules writ-
ten by experts, as well as parametric and non-
parametric density estimators.

3) Bayesian Ranking. As each of the 76 detectors
can flag 76 different types of anomalous activity,
for each user we must amalgamate the alerts
raised about his activity and merge them into
a single score capturing the likelihood that he is
a malicious insider.

We describe these five steps in further detail below.
2.3.2.1 Data collection: An IU-event is an

atom a(t1, . . . , tn) where a represents an action,
and t1, . . . , tn represents the parameters associated
with an action. Thus, an IU-event is nothing but
an action as represented for many years in AI
planning [42]. As usual, different actions can have
different numbers of arguments. ELICIT looks at
packet level data and extracts 8 types of high
level actions. These actions captured by ELICIT are
list,delete,read,write,move,print,query,send. Because
ELICIT captures arguments, its actions are similar to
those captured by Liu et al. [38] except that they do
not consider either sequences of actions (n-grams) or
histograms. The arguments of each of these actions
are drawn from the following “fields”: protocol
(such as HTTP, SMTP, FTP, etc.), file name/path,
start/stop time, client/server IP address, user name,
bytes, original file name, printer id, pages, search
phrase and e-mail headers. Different actions have
varying subsets of these “fields” as attributes.2 The
conversion of packet level data to these high level
IU-events was done using a software package called
Ethereal.3

2. The authors note [5, p.149] that “With the exception of send,
we selected these actions and fields based on analysis of past insider
cases and hypotheses about which would be useful for detecting
violations of need-to-know.”

3. www.ethereal.com

In addition to IU-events, ELICIT also captures var-
ious auxiliary types of information. These include
various attributes about each user such as their office,
title, the projects they were working on, and so forth.
By examining emails, ELICIT was also able to build
a social network of users within the organization. By
understanding the projects a user was working on,
they were able to identify the types of documents the
person should be looking at (e.g. a Nigerian analyst
should perhaps not be looking at documents about
the Philippines unless the documents involved both
Nigeria and Philippines). Likewise, a person would
be expected to use printers near his office, not ones
far away.

Last but not least, the authors wrote “event attribu-
tion” code which tied IU-events to specific users. Of
the 91M IU events tracked by ELICIT, the authors note
that 14.7% were directly attributed to a user (i.e. the
user authenticated himself prior to the event), 2.3%
were indirectly attributed (e.g. the user’s email was
included), while the remaining events were not at-
tributed. In order to attribute the 83% of unattributed
events, the authors used two techniques.

Suppose e1 : t1, e2 : t2, . . . , en : tn represents a
sequence of events ei occurring at time ti. We assume
t1 < t2 < · · · < tn, i.e. the events are listed in
ascending chronological order. Note that some of the
ei’s may be attributed to a user, while others may not.
Let user(ei) be the ID of a specific user when ei is
attributed and ⊥ (or unknown) otherwise. Suppose
now that user(ei) = ⊥ and we want to infer the
correct user associated with ei. The authors propose
two methods, one of which is discussed below.

In the first event attribution method, let L =
max{j | j ≤ i ∧ user(ej) 6= ⊥} and U = min{h | h ≤
i ∧ user(eh) 6= ⊥}. Thus, eL is the nearest attributed
event prior to the event ei we are trying to attribute,
while eU is the nearest attributed event after the event
ei we are trying to attribute. We set Best = L if
|ti − tL| ≤ |ti − tU | and to U otherwise. In other
words, Best is the attributed event (of eL, eU) that
is temporally closer to the event we are trying to
attribute. The event ei is then attributed to eBest.

2.3.2.2 Anomaly Detectors: ELICIT contains 76
detectors that each track one type of activity. Not
all activities mentioned above are used — the au-
thors focus on browsing, searching, downloading, and
printing activities. Given a window w of time, ELICIT
tries to capture anomalies during that window of
time.

Like Liao and Vemuri [40], ELICIT associates a his-
togram in order to capture the activity of individual
users. In addition, they develop histograms to capture
the activities of users having the same job title. Given
a window w of time, a user u and a property p, let
µ(u, p, w) be a measure of how much user u engaged
in property p during time window w. Likewise, given
a group G of users, let µ(G, p,w) denote the same

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 10

quantity, applied to a group of users. The 76 detectors
varied these properties, but they included things such
as the number of “sensitive” search terms (e.g. “pro-
prietary”), the number of pages and/or documents
printed to a printer that is not located near the per-
son’s office, the number of documents downloaded,
the number of search queries issued, and so forth.
In addition, ELICIT also used a social network of
users within the organization (built from email traffic)
to identify the percentage of documents that a user
retrieved that were retrieved by people outside his
immediate neighborhood (i.e. people who were two
or more links away from him in the organizational
social network). The rationale here is that the user
might be expected to work on things similar to those
that people he is directly connected to work on, but is
less likely to have work-related interests in documents
not authored by people near him in the network. For
all of these types of “detectors”, ELICIT typically used
experts to define anomaly thresholds. When a user’s
activity during a given time window exceeded the
anomaly threshold, then an alert would be generated.

In short, at the end of the anomaly detection phase,
each user u has an associated set of (upto 76) alerts
generated for the most recent time window w.

2.3.2.3 Bayesian ranking: The set of generated
alerts is then shipped to a Bayesian ranking engine
that tries to assign a “threat score” to each user.
This is done by a 3-layer Bayesian network. The
root is the Malicious Insider node. The next two
levels have nodes corresponding to each of the 76
properties detected by the detectors. Given a node
N coresponding to a detection property pN , node
N intuitively captures two conditional probabilities:
P(u is malicious|u generated an alert for p) and
P(u is malicious|u did not generate an alert for p).
For each node at the third (leaf)
level, we have two probabilities again.
P(detector will generate an alert for p| p occurs) and
P(detector will generate an alert for p| p did not occur).
The probabilities for the top two levels were generated
by experts, while the probabilities for the last level
seem to have been captured using historical data.

In order to assess the score of a single user dur-
ing a given time window, ELICIT first sets to 1, all
nodes at the leaf level (3rd level) for which the user
generated an alert. It then propagates probabilities up
the Bayesian network till a probability is assigned
to the root node, Malicious Insider, specifying the
probability that the insider is malicious.

Based on these steps, the authors conducted experi-
ments using one month’s network traffic data. A “red
team” generated 8 evaluation tests, each correspond-
ing to a real world insider scenario that had occurred
in the past (e.g. Aldrich Ames, Robert Hansen, and
others). The authors report that their false positive
rate was 1.5% which is outstanding, and that the area
under the ROC curve was 0.92. These are outstanding

results. However, the study suffers from a few prob-
lems.

1) First, a number of “past malicious insiders”
were studied by both the ELICIT team and the
Red Team, so the training and validation data
sets effectively overlapped which is somewhat
strange.

2) As the red team only used the behaviors of
past malicious insiders to inject threats, ELICIT
shows that detecting known past behavior can
be done efficiently and with a lot of work. This
explains the high AUROC of 0.92 obtained by
the ELICIT team. It is silent on the topic of
detecting unknown new behaviors. For instance,
a spy working for a foreign state may well use
sophisticated new techniques disclosed to him
by his control operators that are designed to be
smarter than those who were caught in the past
(clearly people who were caught in the past were
not smart enough not to get caught!). The BAIT
system proposed in this paper helps address
this.

3) Third, by requiring that all past anomalous be-
haviors be encoded in some form or fashion into
the detectors (which are often hand-coded), it is
hard to say how ELICIT will translate to different
settings.

Nonetheless, ELICIT represents a good effort to iden-
tify malicious insiders. The 76 detectors they built
track different types of known malicious behavior
and must form part of any reasonable insider threat
detection system.

To answer these problems, in 2007 the ELICIT team
conducted a fascinating study of more than 50 partic-
ipants, holding various positions at MITRE including
management, technical, and administrative staff [6].
The participants were randomly assigned to one of
two conditions: benign user (control group) or mali-
cious user (experimental group). Both roles describe
a person who has fallen on the same hard financial
times and must find and deliver the most valuable
information in order to improve his or her financial
situation. In the benign condition, the person was
given an opportunity to participate in a high-profile
team and had it explained to him that outstanding
performance would likely lead to a promotion and a
pay increase. In the malicious condition, the person
was given an opportunity to start a new, higher-
paying job, but the offer was conditional on bringing
inside information from the old company, thereby
providing a competitive advantage in a major federal
acquisition.

They monitored the participants’ activities. Their
preliminary analysis revealed interesting and signif-
icant patterns in malicious behavior. Some of the
patterns they found for distinguishing between be-
nign and malicious behavior are related to the actions

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 11

we enabled in BAIT such as fetching documents,
document editing and saving documents to CD. They
do not use any Machine Learning in their approach.
ELICIT’s list of detectors is very valuable and must
be deployed — but it is unclear how it will apply
to threats never seen before which is the focus of
our work. Nonetheless, ELICIT’s findings support our
approach in BAIT that role playing is a necessary
methodology to tackle the insider threat challenge
and that given such data, machine learning techniques
should be used to build malicious insider predictors.

2.3.3 Other Relevant Anomaly Detection Work
ADAM [43] uses frequent sequence mining for ex-
ternal threats. The model is built in two stages, first
ADAM uses attack-free feature vectors to find fre-
quent sequences associated with normal behavior. In
the next stage, unlabeled data is mined for frequent
sequences that are compared with those found in
the first stage. Frequent sequences that occur in the
unlabeled data that are not frequent in the first set
are tagged as suspicious. Another similar external
threat detection algorithm is proposed by Denning
[44] where the attack-free feature vectors are profiled,
and malicious insiders are viewed as anomalies that
do not fit the model.

Lee et al. [45] provide a detailed discussion on
the unique characteristics of external threat detection
such as: how to measure accuracy in external threat
detection, or what features to extract. The data they
use have no examples of anomalies (i.e. malicious in-
siders). The authors overcome the absence of anomaly
data by presenting a technique for artificial anomaly
generation.

Related efforts include the use of stochastic timed
automata to recognize unexplained (though not nec-
essarily malicious) activity in video [46] — this model
was subsequently adapted to identifying unexplained
sequences of events in network traffic as well [47],
[48].

Shavlik and Shavlik [49] proposed a machine learn-
ing algorithm that uses Winnow [50] to create an
anomaly detection system. This system creates statis-
tical profiles of normal usage for a given computer
running Windows. Deviations from the normal pat-
tern may be indicators for external threatening be-
havior. Examples of features are network activity, file
access, CPU load and many more. Detection rates of
nearly 95% were found for the data set of 16 subjects
collected. A similar study of Richardson et al. [51]
used keyboard and mouse activity to profile users,
and attempted to differentiate between a legitimate
user and a masquerading user.

Ray and Poolsapassit introduce an interesting ap-
proach to insider threat detection [52]. They present
a method to amplify existing external threat detec-
tion methods with a system that targets suspicious
insiders. They assume that it is possible to enumerate

the attacks that can be launched against a system,
and use this to derive a list of all actions that can
be performed against the system. Users are asked
to submit a description of their intended usage of
the system, and deviations from this plan, that are
considered attacks are reported and raise alarms.

Senator et al. [9] presented new approaches to
detect insider threats. The system uses structural and
semantic information in a variety of anomaly detec-
tion algorithms. They suggest a large variety of meth-
ods including using behavior of suspected insiders,
indicator of unusual activities, statistical patterns or
normal and suspicious behavior etc. For example,
one of the studies presented in [9] and expanded in
[53] describes how using domain knowledge creates a
good starting point to select appropriate features for
use in anomaly detection, which are associated with
insider threats. In [53] Senator et al. also presented
a visual language to describe anomalies relevant to
insider threats. Nance and Marty [54] presented meth-
ods of classifying and visualizing insider behavior
to establish a pattern of acceptable actions based on
workgroup role classifications. The proposed methods
are demonstrated via simplified examples showing
how visualization can be used to help detect insider
threat. The work of Senator et al. [9] demonstrates
the feasibility of detecting insider threats. The authors
describe a very impressive number of results using
various methods for analyzing the data from the
ADAMS project4. however, they do not suggest a
specific method as being superior to others and state
that additional research is necessary in order to enable
the real usage of these methods. Moreover, in their
work, the attacks are synthetically generated and not
real, even though these fake attacks are embedded in
real transaction data.

A special type of malicious insider is a masquer-
ader - a person who uses somebody elses computer
account. Masqueraders are mostly insiders. Schonlau
et al. [55] studied whether statistical methods can
find anomalies in the behavior of masqueraders. Being
aware of the difficulty of finding data to detect mas-
queraders, they developed a detailed methodology
for simulating masqueraders. They collected UNIX
command data from 70 users: 50 users served as
intrusion targets and the remaining 20 users served
as the masqueraders and they interspersed their data
into the data of the 50 users. Using this data they
showed that it is possible to detect masquerades by
formulating hypotheses and applying statistical the-
ory to test them.

2.4 Honeypots
There has been a tremendous amount of work done
on the use of honeytokens [56], honeypots [57], and
honeynets [58]. Honeypots have been used to identify

4. en.wikipedia.org/wiki/Anomaly Detection at Multiple Scales

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 12

spammers [59], build collections of malicious code
[60], identify credit card fraud and identity thieves
[61], to name a few applications. All of these methods
are designed to lure a person with malicious intent
towards an apparently valuable piece of information
with the goal of identifying who he is and what
he wants. People identified using honeypots gain no
secret information (at least through the honeypot) and
can be further investigated by other means such as
traditional law enforcement mechanisms (in addition
to ongoing online surveillance of their activities). In-
formally speaking:

1) A honeytoken is a computational entity such as a
database record, a login/password combination,
a name/social security number combination, a
file such as a corporate spreadsheet or a cor-
porate document designated to lure a malicious
user to access it.

2) A honeynet is an entire network of computers
whose sole purpose is to lure potentially ma-
licious users inside a fishbowl where their ac-
tivities can be comprehensively monitored, their
identity established, and where it is possible to
establish their motivations and intent.

3) A honeypot is a decoy (e.g. a file or a server)
that is indistinguishable from other similar ob-
jects (e.g. real files or real operational servers)
intended to trick a malicious user into thinking it
has significant utility for him (e.g. as a launching
pad for accessing additional information or for
launching spam).

Of course, all the “honey” type objects mentioned
above contain spurious content which aim to cause a
malicious user to reveal himself. We will use the word
“honeypot” to collectively refer to all of these entities
in the rest of this section. Though there are many
excellent papers on honeypots, we will focus only on
a few that capture the main features of honeypots.

In a very practical paper, Spitzner [62] suggests that
various honeypot methods may not succeed against
users who are merely sniffing the network. In order to
address this, he suggests that honeytokens be embed-
ded in network traffic. As a consequence, instead of
waiting for a malicious insider to “come to the hon-
eypot”, the “honeytokens” fly around the network.
A malicious user sniffing the network, for example
for userid-password combinations, will likely sniff
out the honeytoken. Once he attempts to use it, the
system, knowing that this is a honeytoken, will be in a
position to monitor the user’s actions. Moreover, it al-
lows the organization’s security managers to identify
where in the network the honeytoken was combed.

A second example provided by Spitzner [57] sug-
gests that honeytokens can be inserted as spurious
email messages in the mail boxes of potential targets
within an organization. Suppose, for instance, a secure
organization like a large defense contractor, believes

that a person X is a high value target for a foreign
state because he works on sophisticated missile pro-
grams. In this case, Spitzner [57] suggests inserting
into X’s mail box, a spurious email that contains a
honey token that purportedly gives access to some
high value data on the missile program (or some other
high value data). If X’s email is compromised and if
the external actor chooses to utilize the honey token,
then the organization’s system managers immediately
know about the intrusion due to the attempt to access
the honeypot. Similar methods can also be utilized to
monitor web searches and the like.

The fact that a person encounters a honey token
may not suggest any malicious intent. For instance,
if person Y were to search his corporate intranet for
information on Iranian missile programs and one of
the returned web pages includes a honey token, then
the fact that he is shown the honey token does not
imply malintent. Even accessing the honey token may
not denote malintent — it could simply be a case of
curiosity. But curiosity killed the cat and in this case,
it would probably trigger a deeper investigation into
the person’s motivations.

Bowen et al. in their excellent paper [63] provide
methods to generate and deploy decoy documents so
that they closely resemble normal documents, making
it hard for a malicious user to distinguish between
real and decoy documents. They developed different
types of decoys as listed below.

1) Hash Method Authentication Codes. One class of
decoys include a keyed “hash method authen-
tication code” or HMAC in it. The idea is that
these codes can be inserted into documents. If
all documents within an enterprise have such
HMACs embedded in them, only a user who
has the key can identify the decoy documents
from the real documents. The authors developed
methods of embedding such HMACs into PDF
documents so that the insertion is not visible
to people viewing the documents. There are a
couple of flaws with HMACS. The first is that
all documents (including all legacy documents)
within an organization must have embedded
HMACS in them — this can be a tall order for
an organization. The second is that an enormous
amount of the code within an organization may
need to be re-engineered in order to account for
the HMACs. For instance, an analyst working
on Nigeria would need to receive only real (not
decoy) documents.

2) Trap-based Hosts. These decoys include honeyto-
kens such as login and password information
of fake Gmail accounts. Users who access such
trap-based hosts can be easily monitored — and
for instance, if they try to illegally use the fake
information, then they are subject to additional
appropriate law enforcement actions.

3) Beacon Decoys. These are malware effectively

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 13

embedded in documents that a person should
not be downloading. An organization might, for
instance, place an Excel spreadsheet somewhere
with names and social security numbers in it (all
falsified) as a decoy. Beacon decoys have pieces
of code embedded in documents so that when
opened (after the document is downloaded),
they reveal a variety of information to the or-
ganization that placed the beacon in the docu-
ment. For instance, suppose a person downloads
the above Excel file from his enterprise onto
a mobile phone. He is most likely a malicious
user — otherwise why would someone want to
download names and social security numbers?
When he opens the document, the document
may contact a remote server controlled by the
organization and send all kinds of information
to that organization. This may include a GPS lo-
cation, the IP and MAC addresses of the phone,
information on the phone SIM card, a video
stream using the phone’s camera, and so forth.
Bowen et al. [63] specified how they built beacon
decoys in Word documents by including remote
images (i.e. images that must be retrieved from
a remote site). When the document is opened,
the attempted remote retrieval is a signal. They
also built beacon decoys in PDF documents.

In order to identify masquerading users (malicious
users masquerading as legitimate users), Bowen et
al. [63] build a behavioral model of a user’s search
actions. As in the case of Liao and Vemuri [40] and
Maloof and Stephens [5], the authors first built a
“baseline” model of each user. To do this, they tracked
a number of system related activities such as activities
related to the Windows registry, actions accessing
various dynamic linked libraries (DLLs), creation of
processes, kills of processes, and so forth. Such ac-
tivities can be considered independent variables. For
each user, they gathered the values of the independent
variables over 10 second windows for many different
10 second windows. They then used a one-class class
support vector machine (OcSVM) such as the one pre-
sented by Schlkopf et al. [64]. Suppose the behavior
of user u during time window wi is captured by a
vector vi where the vector vi contains one value for
each independent variable. Let W = {w1, . . . , wr} be
the set of all time windows. The OcSVM tries to find
a hyperplane h in this n-dimensional space where n is
the length of the vector such that the probability that
a randomly chosen point within the n-dimensional
space is in W is less than or equal to some user
specified threshold probability p. In addition, the
number of errors must be bounded. Finding such a
hyperplane can be posed in a straightforward way as
a quadratic programming problem. Bowen et al. [63]
used ocSVMs, which use features such as those listed
above, to build a model of normal behavior of a user

u. They then used the ocSVM to identify users whose
current activity (e.g. in a time window wr+j for j > 0
does not fall on the same side of the hyperplane h as
the training data. According to their paper, they were
able to use this method to detect all masquerading
activity with 100% accuracy with a false positive rate
of 0.1% which are very impressive results.

Kandias et al. [65] present an interesting model
that integrates several of the techniques we have
discussed, combining technical solutions with ap-
proaches that draw upon psychology. They use a user
taxonomy, psychological profiling, real time usage
data, honeypots and a decision algorithm in order
to identify potentially dangerous users. Unfortunately,
no experiments were performed to test and evaluate
their interesting model.

2.5 Graph-Based Approaches

A number of efforts also look at graph-based models.
Chinchani et al. [66] introduced the concept of a

Key Challenge Graph (KCG), extending the well known
notion of an attack graph [67]. The vertices in a KCG
corresponds to some physical entity such as a host
computer or a server. An edge is drawn from entity v1
to entity v2 if there is a communication channel from
v1 to v2. The framework Chinchani et al. presented
in their work [66] allows multiple edges to exist from
entity v1 to entity v2. A key is a computational object
present on a vertex — there is a mapping specifying
what resources are available at which vertices. Keys
could include passwords, data, documents, programs,
and other objects. An edge may have zero or associ-
ated key challenges, specifying a hurdle that must be
cleared by the user trying to traverse an edge from v1
to entity v2 in order to access the keys present on v2 —
for example a key challenge could ask for a userid and
password combination or may ask the user a question
(e.g. “What is your mother’s maiden name?”) and
wait for a correct answer. In addition, we assume the
KCG specifies some set of vertices that are starting
points of attacks and some set of vertices representing
possible targets. The goal of the malicious insider is
to reach all of the targets.

A successful attack on a target is basically a se-
quence of vertices that the insider can traverse, start-
ing from vertices that he initially has access to, which
eventually include all the vertices in the target set. Of
course, only edges in the graph where the user can
address the key challenge successfully can be used
to build this sequence. The authors defined a cost
for traversing edges. They show that the problem of
checking whether a key sequence with cost below
some threshold exists is NP-complete. They then pro-
vided algorithms to compute successful near minimal
cost attacks and showed that their heuristic algorithm
runs in a reasonable amount of time on very small
graphs (upto 300 vertex graphs) – and they reported

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 14

that on such graphs, computing time can take 15-20
minutes.

Though Chinchani et al. [66] provided an elegant
notion of key challenge graphs, their work has two
major shortcomings. First, there is no empirical ev-
idence showing that they were able to really catch
insiders as the framework was not tested on real data.
Second, the run times are prohibitive. In real world
enterprises, the graphs are likely to have millions of
vertices, leading to unacceptable run times.

Eberle et al. [68] proposed a method for detecting
insider threats by developing graph-based anomaly
detection algorithms. They proposed GBAD, a graph-
based anomaly detector. They studied anomalous in-
sertions, modifications and deletions w.r.t. a graph.
Given a body of transactional data (e.g. IP logs), they
followed three steps:

1) Discovering network activity that is unexpected.
This can be achieved by standard anomaly de-
tection methods.

2) Create graphs focused solely on the times when
the anomalies occurred and the relevant users.
Within a given time frame, they can eliminate
vertices in various ways, e.g. people whose ma-
chines were compromised.

3) Predict who is behaving in an anomalous man-
ner. For this, they built a graph containing
“movement” data for each employee identified
in the preceding step (only for the days when
anomalous activity was reported). The nodes in
the movement graph involve location nodes (e.g.
outside, building, classified space, network, etc.)
and an edge is drawn from one node to another
if the user did something that involved moving
(either him or data) from the first location to the
second. For instance, we may have an edge from
“network” to “printer4” with the label “send” or
“number of docs” to indicate a print job by the
user.
Using a set of training data (graphs), the GBAD
tool identified what they call “normative” pat-
terns. These appear to be closely related to fre-
quent subgraphs or common subgraphs in the
training data. They then measured the distance
between a particular user’s “movement” graph
and the “normative” pattern. They looked for
the top-k most distant users and flagged them
as the most anomalous. They test their method
on data from the VAST (Visual Analytics Science
and Technology) insider threat data which con-
sistsed of 60 people. Using an ensemble of three
different methods, they were able to narrow this
number down to 2. On a synthetic graph with
1M vertices, their algorithm took about 3 days
to run.
Unlike Chinchani et al. [66], the work reported
by Eberle, Graves and Holder [68] was tested on
realistic sized synthetic data for run time. Three

days may seem like a lot to computer scientists,
but for security organizations seeking to find
malicious insiders, having a computer run for
3 days is perfectly acceptable if it can generate
good results. The accuracy tests they performed,
however, need more work. The VAST data set,
contrary to its name, is not vast, but tiny with
only 60 users in it — and the data is all synthetic.

Other graph based methods use stream mining to
detect insider threats, with both unsupervised [69]
and supervised [70] methods. The unsupervised ap-
proach used by Parveen et al. [69] adapts GBAD to
work with unbounded streams that have evolving
patterns (with an accuracy of 56%, false positive
rate of 54%, and false negative rate of 42%). The
supervised approach [70], which implements a one
class SVM that handles unbounded streams (with an
accuracy of 71%, false positive rate of 31% and false
negative rate of 0%) was found to be superior to the
unsupervised approach.

2.6 Game Theory Approaches

Game theory is widely used in modeling security
problems [71], [72], [73], [74]. Liu et al. [75] proposed
the insider game -- a two-player zero-sum stochastic
game to model the interaction between the insider
and the system administrator. Their goal was that the
game would facilitate the understanding of malicious
insiders’ motives and their decision-making process.
Also, the insider game helped infer the strategy that
the insider would take and determined the defender’s
best counter-move. They demonstrated the applicabil-
ity of the game by using it to model and analyze a
real-life incident where the administrator cannot rec-
ognize some states [76]. While the accurate prediction
of an insider’s moves was the main motivation, only
Nash equilibrium analysis has been used to capture
the insider’s future actions, in order to respond prop-
erly. It is well known that people do not follow Nash
equilibrium strategies [77], [78] including intelligent
security people [79]. In addition, the game is a one-
shot game, and a discussion on repeated games was
not included.

To address these two shortcomings, an extensive
form game played repeatedly between the malicious
insider and the Intrusion Detection System (IDS) of
the organization was provided by Kantzavelou and
Katsikas [80]. They deployed the logit Quantal Re-
sponse Equilibrium (QRE) to capture the players’
bounded rationality and to model the insiders’ be-
havior following other security systems that deploy
game theory methods [79], [81]. They used the QRE
results to predict insiders’ future behavior. Using
these predictions, they suggested reactions to the IDS
against this behavior in order to protect the system.
To demonstrate the applicability of their approach,
they implemented an IDS. However, no experimental

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 15

evaluation was conducted. Some of the concerns with
respect to this approach include: (i) the time com-
plexity of the QRE calculations and (ii) whether the
assumptions made when defining the game are real-
istic. In particular whether the defined set of possible
actions of the game is large enough and the whether
the system will be able to identify them.

Tang et al. [82] extended Kantzavelou and Katsikas’
model [80] in order to handle shortcomings of tradi-
tional IDSs. They proposed to use a dynamic Bayesian
network (DBN) structure [83] to infer the insider’s
actions before calculating the QRE equilibrium. They
compared their approach to Kantzavelou and Kat-
sikas’ model by means of simulation experiments.
They showed that while their computation cost was
higher, they obtained improved convergence and pre-
cision.

Zhang et al. [84] discussed an interesting idea.
They observed that an attacker’s strategy depends
not only on his own goals but also on the toughness
of the defender (i.e., the defender’s willingness to
enforce security, even at the expense of false posi-
tives). They studied how to establish the defender’s
toughness reputation in anomaly detection against
insider attacks. They considered both naive attackers
who attack regardless of the defender’s reputation
and actions, and smart insiders who learn from the
outcomes of past attacks in order to avoid detection.
Based on a game-theoretic formulation, they proposed
two generic reputation-establishment algorithms for
systems consisting of only smart insiders and also
those with both smart insiders and nave attackers.
They performed experiments using the syntactic data
of [38]. The experimental results and the theoretical
analysis indicate that their proposed algorithms can
significantly improve the tradeoff between the detec-
tion rate and the false positive rate.

3 THE BAIT FRAMEWORK

In this section, we present BAIT (Behavioral Analysis
of Insider Threat) — a framework developed by the
authors to use behavioral cues to identify insider
threat. In particular, BAIT represents one of the first
studies of real-world users attempting to compro-
mise a system — a smaller scale study was reported
by Caputo, Maloof and Stephens [6]. BAIT contains
bootstrapped algorithms that try to learn separators
between malicious insiders and honest users for an
environment with the following properties:

• Honest and malicious insiders’ data is gathered
from real human players. We took a number of
steps (detailed later) to ensure that only high-
quality subjects dedicated to their mission were
considered in our study.

• The attacks are carried out by real humans similar
to employees in an organization without regard

to past attacks reported in the literature. In partic-
ular, our results are not biased by the possibility
of both attackers and defenders studying past
cases of insider attacks (which has biased many
previous studies).

• Malicious insiders are directed to hide their ac-
tions.

• There is almost no labeled training data and the
training data set is highly imbalanced.

• The system does not have any data on users’ past
behavior.

• The system may only observe the players’ actions
on a high-level and does not have any access
to specific features of the documents which the
players are handling or should handle.

Table 1 shows that BAIT is different from the related
work described earlier (i.e., the papers we described
earlier) because it was explicitly designed to ask real
users to carry out attacks without exposing these
real users to data about past insider threat attacks.
BAIT carried out real experiments with a 35 round
game in which 795 users were recruited on Amazon
Mechanical Turk.

3.1 The BAIT Game
The BAIT game is deployed on Amazon Mechanical
Turk and helps us learn behaviors of real world users
who both act normally and who are charged with
exfiltrating data from an organization. Players were
told that they have to select tasks that they would
perform in a high security facility on various topics.
They do not actually perform these actions, but rather
select them from a list of predefined possible actions.
The players were told that they are required to gather
information on several assigned topics (e.g. an ana-
lyst might be tasked to collect information on piracy
incidents off the Horn of Africa), edit this information
and send it (or hand it) to the topic’s requester.

The game is a single player game (i.e., an ”open”
game) and is composed of 35 rounds. The player
may either be an honest worker or a malicious insider.
Both types of workers receive a list of between 3 to 5
classified5 topics. The players are told to gather infor-
mation on each of these topics, edit this information
and send it to the topic’s requester. The players are
told to assume that all the information that they are
dealing with is classified. The players are given an
additional topic (“personal interests”), to which they
may attribute all actions not strictly related to their
work. Such actions are a proxy for the fact that some
analysts may check basketball data while on their
classified machines or ballet performances, reflecting
things in which they are interested. All players are
told that there is a system monitoring their actions.
Malicious insiders are given an additional topic t

5. Of course, we do not use real classified data, just specify topics
the users are told may represent classified information.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 16

approach honest & malicious system observation supervised assume strictly
user source /unsupervised user distinguished

/semi-supervised history train/test
Greitzer & Frincke synthetic data psychological unsupervised no no

[22] (stress, anger, etc.)
Liu et al. synthetic data full knowledge supervised yes no

[38] of user actions
ELICIT genuine honest, full knowledge supervised yes no

[5] synthetic malicious of user actions
(“red” team)

GBAD large synthetic data transactional data unsupervised yes yes
[68]

MITRE 50 human players full knowledge statistical analysis no no
[6] 25 malicious of user actions only

BAIT 795 human players player high-level semi-supervised no yes
7 known malicious actions

TABLE 1
Comparison of different approaches for insider threat detection

(e.g. design plans for a new missile) and told that
their job is to come up with actions that exfiltrate
that data, while minimizing the probability of detec-
tion by the surveillance system and/or human cyber-
security personnel. This type of worker is told that
the topic t is his top priority and that he must try
to hide/disguise any actions that he performs related
to this topic. Note that the extra malicious topic is
performed alongside the other tasks that the player
performs. This simulates the behavior of malicious
insiders, who perform both regular tasks and a small
amount of malicious tasks.

In every round of the game, each player may choose
to perform one of the following 13 actions regarding
each of the topics assigned to him. These actions
are similar to actions studied by other researchers
in the past such as Maloof and Stephens’ [5] ELICIT
system. Note that later in the paper, we will develop
features used by our bootstrapped machine learning
algorithms on top of these actions; thus these actions
are not features.

1) Do nothing.
2) Fetch a document from the confidential internal

data-base related to [a selected topic].
3) Ask a colleague to send a document related to

[a selected topic].
4) Fetch a document from a CD / DVD related to

[a selected topic].
5) Fetch a document from the USB drive related to

[a selected topic].
6) Fetch unclassified data from the internet / email,

related to [a selected topic].
7) Send an email with encrypted data related to [a

selected topic] to the topic’s requester.
8) Save data to a CD / DVD related to [a selected

topic], and deliver it to the topic’s requester.
9) Save data to the USB drive related to [a selected

topic], and deliver it to the topic’s requester.
10) Send unencrypted data related to [a selected

topic] to the topic’s requester via email/internet.

11) Print information related to [a selected topic],
and hand the pages to the topic’s requester.

12) Send encrypted data over the internet related to
[a selected topic] to the topic’s requester.

13) Edit information on [a selected topic].
Note that the number of actions we allow the user to
perform is actually much greater than 13 because 12
of the actions are each parametrized by a topic. Thus,
BAIT allows the user to select any of the 12T+1 topics
where T is the total number of possible topics.

Each player needs to perform 35 actions (of which
he may do nothing as many times as he wants). Every
time a player performs an action related to a topic,
that action is listed under the associated topic.

The system does not see the topics, but only knows
what actions were performed. We term the actions
related to transferring data as “transfer actions”. The
transfer actions include: save to CD, save to USB,
print and 3 “send” type actions: email, internet, un-
encrypted. For the three send actions, the system
can also determine whether the actions were inter-
nal or external, resulting in 6 possible “send” type-
destination combination actions. The internal destina-
tion “send” operations send information within the
organization. The external destination send operations
send data out of the organization, and can be used by
either honest users (e.g. for following/communicating
their personal interests) or by malicious users (e.g. to
exfiltrate data). However the system does not know
if the external destination operations were used by
honest users for their personal reasons or by malicious
users to send sensitive data to people outside the
organization which is strictly forbidden.

3.2 Background on Semi-Supervised Learning
and Imbalanced Data

The data available in our domain is generally com-
posed of a very small amount of labeled data and
large amounts of unlabeled data. This motivates the

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 17

use of Semi Supervised Learning. An extensive survey
of semi supervised learning can be found in Zhu’s
survey [85]. We briefly describe two of the method
types suggested in the survey and their applicability
to our problem. The oldest methods include gener-
ative models that identify distributions in the unla-
beled data, and then use the small labeled data set
to match a label to each distribution. This method is
not suitable when the number of malicious insiders in
the data is very small. Another family of methods is
the Self-Training family. These methods first classify
the labeled data and then use the model to classify the
unlabeled data. The newly classified unlabeled data is
then added to the labeled data set and a new model
on all the labeled data is built. This process can be
performed iteratively. Several of the algorithms we
propose adapt this idea.

Aside from the need to use Semi Supervised Learn-
ing our data is also characterized by being very
imbalanced. There are many more honest people than
there are malicious insiders. And most of the actions
taken by the malicious insiders may be benign with
a relatively small number of malicious actions hidden
within a larger number of benign actions. This leads
us to search for algorithms that learn from imbalanced
data. Two comprehensive surveys on imbalanced data
[86] and rare data [87] describe variants of imbalanced
data. Sometimes the issue of imbalanced data can
easily be solved by sampling methods that either
undersample the large class or oversample the small
class. However in domains where the small class is
also rare (the number of episodes is very small) under-
sampling is of no help and oversampling may lead to
overfitting [86]. Another approach suggests assigning
different weights to the cost of misclassification of
episodes in the learning algorithm. However these
techniques are developed for specific paradigms and
there is no unifying framework for general cases [86].

A related problem that is also close to our problem
is that of partially supervised classification [88], where
there is a labeled set of data for the positive data and
a mixed data set that has both positive and negative
documents but no labeled negative documents. They
use an iterative algorithm that first learns from the
positive data. Next they select those most likely to be
negative from the unlabeled set and add them to the
labeled data to build a new model. This stage is re-
peated iteratively. We implemented a similar method
in one of the variations we tested. However our initial
model is built on both positive and negative examples
(see Algo. 3 for details).

As we perform semi supervised learning on imbal-
anced data, we seek to combine methods for semi
supervised learning with imbalanced data learning.
As stated by Haibo and Garcia [86] ”...the issue of
semi supervised learning under the condition of im-
balanced data sets has received very limited attention
in the community.”. This motivated us to develop the

BAIT Algorithms.

3.3 BAIT Algorithms

The BAIT system includes a suite of seven algorithms
that are built on top of two classical machine learning
algorithms — Support Vector Machines [8] or SVM
and Multinomial Naive Bayes [89].

In all SVM methods, we determine the best kernel
by using cross validation on the labeled data. We con-
sidered linear kernels, polynomial kernels of degree
2 and 3, and the Radial Basis Function (RBF) kernel.
We use cross validation on the labeled data also when
considering the best method for dealing with imbal-
anced data. We consider oversampling of the minority
group (the malicious insiders), undersampling of the
majority group (the benign users) and cost weight
adjustments. We propose 5 methods for building the
model. In methods 2-5 we use a confidence measure.
The confidence is defined as the greatest distance from
the separator hyper-plane computed by SVM.

3.3.1 Algorithm BAITL - Use Only Labeled Data.

The BAITL algorithm is extremely simple and serves
as a baseline. Given a set L of labeled data, it merely
uses SVM to compute a separator hyperplane and
then uses this as a classifier. Nothing particularly
intelligent is done other than the use of SVM as a
classifier.

3.3.2 Algorithm BAITLUMI - Use Labeled Data +
Unlabeled Malicious Insider.

The BAITLUMI algorithm (Algo. 1) is smarter than the
baselineBAITL. It takes as input, a highly imbalanced
and very small labeled data set L with very few
labeled malicious players as well as an unlabeled data
set U , and an integer k ≥ 0.

It first uses the BAITL algorithm above to learn
a separator using SVM on the labeled data. Next, it
labels all users in U using the SVM learned. It then
identifies the top k malicious users (Ltop) (i.e., the k
users with the highest confidence). It then re-learns
a new separator, using L ∪ Ltop as a training set. It
then associates labels for all users in U \ Ltop using
the learned separator (of course, the labeled entries
in Ltop keep their labels.) and denote it LU . Then it
returns the separator learned from L ∪ Ltop ∪ LU .

In short, BAITLUMI constructs a model by classi-
fying the unlabeled data using an SVM learned on
the labeled data, chooses the top k malicious insiders
from this set in order to reduce the imbalance in the
data between malicious and honest users, and then
retrains and reclassifies. The idea of choosing the top
k malicious users is that these users are the most likely
to have been correctly classified in the first step.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 18

Algorithm 1 BAITLUMI

Input: labeled data L, unlabeled data U , number k
Output: BAITLUMI

BAITL ← Build model using SVM on L.
LU ← label U using classification of BAITL on U
Ltop ← top k malicious insiders (highest confidence) from LU

ML−top ← Build model using SVM on L ∪ Ltop.
LU ← label U using classification of ML−top on U
ANS ← Build model using SVM on L ∪ LU .
Return ANS.

3.3.3 Algorithm BAITLHUMI - Use Labeled Data +
Honest and Unlabeled Malicious Insider.
In the BAITLHUMI algorithm (Algo. 2), we extend the
idea in BAITLUMI . As before, we first learn an SVM
model M from the labeled data set. But instead of
just looking at the top k users labeled as malicious
by M in the unlabeled data set, we identify both the
top k malicious users and the top ` · k honest users
and add them to the training set and then recalibrate
the model M . The reason for adding only the top
k malicious insiders but not adding a much larger
number of honest users is to account for the imbalance
in the data as in both the real-world and in our data
set, the percentage of malicious insiders is very small.

3.3.4 Algorithm BAITI−LHUMI - Use Labeled Data
and Iteratively Update Unlabeled Data with Malicious
User and Honest Users
The BAITI−LHUMI algorithm (Algo. 3) adapts the
BAITLHUMI algorithm by iteratively processing the
unlabeled data with the most recently learned SVM
model, then adds the most likely malicious user and
a larger number of the most likely honest users back
into the labeled data, and recalibrates. The most likely
malicious/honest user is added back into the labeled
data set, one at a time, not k or k · ` at a time as in
the BAITLHUMI approach above. By adding each back
one at a time, we hope to obtain better models, due to
the fact that the model is recomputed after each new
labeled user is captured.

3.3.5 Algorithm BAITMI−LHUMI - Use Labeled Data
and Iteratively Update Unlabeled Data with Malicious
User and Honest Users
In the BAITMI−LHUMI algorithm (Algo. 4), we extend
the BAITLHUMI algorithm in a different way. We
first learn an SVM model M from all of the labeled
training data L. We then classify the unlabeled data U
using this learned model. We then randomly choose
one malicious user from the top r malicious users
in U for some value of r and label this person a
malicious user — this is different than what occurs in
the BAITLHUMI algorithm. Then, as in BAITLHUMI ,
we choose the top ` honest users in U . These ` + 1
users (` honest plus one malicious insider) are then

added back to the labeled data set and this process is
iterated within the inner loop of the algorithm until all
U is labeled. The entire inner loop is executed J times
for some J > 0 in order to smooth out the random
choice made in the computation of Lmi. After iterating
this J times, we get a total of J groups of malicious
insiders. We label the s feature vectors which appear
most frequently in these groups as malicious insiders
and the others as honest and retrain the SVM using
both this data and the original labeled data (L).

3.3.6 Naive Bayes (BAITNB) Algorithm
The BAITNB algorithm is very simple — we merely
applied the classical Multinomial Bayes algorithm on
the labeled data and used that classifier to label the
unlabeled data.

3.3.7 Bayes with Iterative Probability Update
(BAITBIPU) Algorithm
This algorithm (Algo. 5) is based on Expectation-
Maximization (EM). Leveraging the idea presented by
Nigam, McCallum and Mitchell [90], we first built a
classifier model using the labeled data and then we
improved the model iteratively using the unlabeled
data together with the probabilities provided in the
most recent iteration. This is executed iteratively till
the model converges.

3.4 Features Used

We developed various types of features based on the
key indicators described earlier. All these features
were chosen without observing the unlabeled/test
data. Some features count the number of times an
action was performed — which we term “basic” fea-
tures. Some features are derived from the “basic” fea-
tures using linear combinations, and some are derived
by the division of one derived feature by another. The
full list of features is given below:
• 16 basic features :

– The number of times each action was per-
formed by the player, where the 3 sending
actions are each split into internal and exter-
nal sending.

• 12 features derived from sending actions:

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 19

Algorithm 2 BAITLHUMI

Input: labeled data L, unlabeled data U , number k, number l
Output: BAITLHUMI

ML ← Build model using SVM on L.
LU ← label U using classification of ML on U
Ltop ← top k malicious insiders and top ` · k honest (highest confidence) from LU

ML−top ← Build model using SVM on L ∪ Ltop.
LU ← label U using classification of ML−top on U
ANS ← Build model using SVM on L ∪ LU .
Return ANS.

Algorithm 3 BAITI−LHUMI

Input: labeled data L, unlabeled data U
Output: BAITI−LHUMI

ML ← Build model using SVM on L.
Lconf = ∅
Ur ← U
while Ur 6= ∅ do

LU ← label Ur using classification of ML on Ur

Lnew ← most likely malicious user in LU and ` most likely honest in LU

. if there are no feature vectors classified as malicious (or honest) users none are added.
Lconf ← Lconf + Lnew

Ur ← Ur \ Lnew

ML ← Build model using SVM on L ∪ Lconf .
end while
ANS ←ML

Return ANS.

Algorithm 4 BAITMI−LHUMI

Input: labeled data L, unlabeled data U , number r, number l, number J , number s
Output: BAITMI−LHUMI

ML ← Build model using SVM on L.
for j = 1 do to J

Ur ← U
Sj ← ∅
while Ur 6= ∅ do

LU ← label Ur using classification of ML on Ur

Lmi ← randomly select 1 malicious insider from top r malicious insiders from LU

Lhonest ← select l honest feature vectors with greatest confidence.
Lnew ← Lmi ∪ Lhonest

Lconf ← Lconf ∪ Lnew

ML ← Build model using SVM on L ∪ Lconf

Ur ← Ur \ Lnew

Sj ← Sj ∪ Lmi

end while
end for
S ← U where the s most frequent feature vectors from all the Sj are labeled as malicious insiders, and the
others are labeled as honest
ANS ← Build model using SVM on L ∪ S.
Return ANS.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 20

Algorithm 5 BAITBIPU

Input: labeled data L
Output: BAITBIPU

L← labeled data
ML ← Build model using MNB on L
repeat

LU ← label unlabeled data with probability of being a malicious insider obtained from ML (E step)
ML ← Build model using MNB on L ∪ LU M step

until converge
ANS ← ML

Return ANS.

– There are 3 types of “send” actions. For each
of these types we define a feature that is
the number of all internal sends (for this
type) divided by the total number of “send”
actions (internal and external for this type).
This provides 3 features, one for each type.

– Sum of all “fetch” actions (fetch from internal
DB, ask colleague for documents, fetch a
document from CD, fetch a document from
USB).

– Sum of all “transfer” actions.
– Sum of all “send” actions.
– Sum of all “send” actions divided by the sum

of “transfer” actions.
– Sum of all external “send” actions.
– Sum of all external “send” actions divided

by the sum of internal and external “send”
actions.

– Sum of all “transfer” actions that are not
“send” actions (save to CD, save to USB and
print).

– Sum of all “unsuspicious fetch” actions. We
define “unsuspicious fetch” actions as fetch-
ing classified data that does not involve other
people: we refer to actions 2 (fetching from
DB),4(fetching from CD/DVD) and 5 (fetch-
ing from USB) described in section 3.1.

– Sum of all “unsuspicious fetch” actions (de-
fined in the previous item) divided by the
sum of all “fetch” actions.

When feeding these features to the SVM algorithms,
we normalize the features to be between −1 and 1.

3.5 Implementation and Experimental Results

We ran the BAIT game (described in section 3.1) on
Amazon’s Mechanical Turk service (AMT) [91]6. The
total number of subjects who participated in all the
experiments included 795, all from the USA of whom
49.8% were females and 50.2% were males. The sub-
jects’ ages ranged from 18 to 68, with a mean of 33.2,
a standard deviation of 10.1 and median of 30. 7.7%

6. For a comparison between AMT and other recruitment meth-
ods see [92].

of the subjects had either a PhD or a masters degree,
45.7% had a bachelor’s degree, 46.3% of the subjects
had a high-school education and only 3(0.36%) sub-
jects had only completed junior highschool.

In the labeled data-set, we ensured that exactly 7
subjects were malicious insiders, and in the unlabeled
data-set and in the test data-set, each player had a 7%
chance of being a malicious insider. The insiders were
explicitly told to hide their actions.

We recruited only subjects with a history of at least
97% approval rate on AMT, and who had completed
at least 60 tasks on AMT in the past. We further had
all subjects pass a quiz ensuring that they were all
diligent in following the instructions. In addition to
all this, since the game is an “open” and unusual
game, we expected some subjects to have difficulty
understanding and playing the game. Therefore, after
the subjects completed playing the game they were
asked whether they understood the instructions and
whether they played similarly to how they would
have played in real life. We removed 101(12.7%)
subjects who either indicated that they did not un-
derstand the game, or that they just picked random
actions. This ensured that the subject pool was even
more serious.

After removing these subjects there were a total
of 100 labeled feature vectors (each feature vector
contained data from a single subject over 35 rounds),
of which 7 were labeled as malicious insiders and 93
as honest players, 394 unlabeled feature vectors and
200 feature vectors to use for testing.

We ran all 7 algorithms described in Section 3.3
on our data. We first describe results for the SVM
algorithms. We used the following settings: we set
k = 11 since we assumed that the unlabeled data
was sampled from the same distribution as the labeled
data. Because there are 7 (of 100) malicious insiders in
the labeled data, we know with a confidence of 95%
that there are at least eleven malicious insiders. We set
s = 28 since we assumed 7% of malicious insiders in
the unlabeled data, since we know that we have that
proportion in the labeled data. We set l = 93

7 = 13.3,
r = 3,J = 50. Cross validation on the labeled data
encouraged us to use a linear kernel and to set the cost
weight function at 0.01 for the honest feature vectors

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 21

and 0.1 for the malicious. We used all the features
described in 3.4 for the SVM models. The results
are described in table 2. As presented in the table,
all methods except BAITL reached a similar recall
of 0.5 − 0.6, however, the precision rate varied from
0.17 in BAITLUMI to 0.3 in BAITMI−LHUMI , resulting
in an f-measure of 0.4 (in BAITMI−LHUMI). In all
algorithms the recall rate was higher than precision.
Indeed, when considering insider threat, recall is more
important as it implies that more insiders will be
detected, even if the precision rate is relatively low,
which implies that more (possibly honest) people will
be interviewed and required to explain their actions.

We also ran Multinomial Naive Bayes on our data.
The actions played in the game can be seen as analo-
gous to words, assuming internal and external sends
are seen as different words. This motivated us to
test Multinomial Naive Bayes on the set of “basic”
features. Unfortunately the “derived” features cannot
naturally be used in Multinomial Naive Bayes. We
wanted to compare the Multinomial Naive Bayes re-
sults to SVM, However SVM did not succeed in build-
ing a model solely using the “basic” features. The re-
sults are described in table 3. Interestingly, BAITBIPU

does not seem to work well with imbalanced data.
Therefore we can conclude that if it is possible to
add additional smart features (the derived sending ac-
tions), it is better to use the BAITMI−LHUMI method.
However, if it is not possible to add additional smart
features, it is better to use BAITNB (which is based
on Multinomial Naive Bayes). When considering only
the labeled data, the Naive Bayes method without the
additional smart features seems to perform at least as
well as the SVM with the additional smart features.

Last but not least, we briefly note that we tested the
use of one-class SVMs that have been used in prior
work [63] on our data. The ocSVMs performed very
poorly on our highly imbalanced data with very little
past history. Consequently we do not pointlessly use
the space in this paper to report the results.

3.6 Discussion

Since the BAIT game is an open game it has no
right or wrong action and there is no scoring or
bonus available. Still we observed that most of the
players played seriously. We believe that in situations
in which both sides have higher motivation to play
their roles, it should be easier to detect the malicious
players.

Another parameter which may have a major impact
on the detection rate is system observation. In our
work, we assumed that the system did not have any
indication on the topics of the documents handled by
the users. Therefore, it could not, for instance, observe
that a user is fetching a document which he isn’t
supposed to view. We assume that if the system would
have cues on the subjects / classification fields of the

documents handled by the users, the detection rate
would significantly increase. The BAIT game may be
expanded to allow such observations by the system.
However, since the BAIT game is already complex,
such an expansion must be done in a manner that
will not make the game much more complex.

We wanted to ensure that we were not influenced
in any way by the unlabeled and test data sets while
developing the proposed algorithms and selecting
features. Therefore we were extremely careful not
observe any of the unlabeled and test data before we
completed our study. However once we finished the
study and wrote the results, we performed a statistical
analysis of the players behavior. In total there were
40 malicious players and 654 benign players. Below
we describe some of the results of comparing the
behavior of the two. We report statistical significance
using the t-test with α = 0.05. The following results
are compatible with the trends found in MITRE [6]
which were applicable to our domain:

1) The malicious players were more active and
chose the ”nothing” action significantly (p <
0.01) less times (3.77) than the benign players
(6.52).

2) The malicious players fetched significantly (p <
0.05) more ”sensitive” information (9.8) than the
benign players (8.26). (See section 3.4 for the
definition of ”sensitive fetches”).

3) The malicious players appeared to save more
data to CD/DVD (1.2) and USB (2.225) com-
pared to the benign players CD/DVD (1.07)
and USB(1.82). However, these differences were
not found to be statistically significant in our
study. These findings vary slightly from those
of Caputo et al. [6] which were found to be
statistically significant.

4) The malicious players edited the data slightly
less (3.77) compared to the benign players (3.88).
However, these differences also were not found
to be statistically significanct. These findings also
vary from the findings presented in Caputo et
al.s’ study [6] which showed the difference to
be statistically significant.

In addition, we found the following statistically
significant differences between the malicious and the
benign players. No similar findings have been re-
ported in prior work.

1) The malicious players sent significantly (p <
0.001) more information out of the organization
with an average of (2.92) times, in contrast to the
benign players (0.68).

2) The malicious players fetched significantly (p =
0.05) less unclassified data (2.87) in contrast to
the benign players (3.40).

The similarity between the trends we observed and
the trends found in MITRE indicates that the BAIT
game is a good platform to simulate insider threat

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 22

Algorithm trueNeg falsePos falseNeg truePos precision recall fmeasure
SVM: BAITL 181 9 7 3 0.25 0.3 0.273
SVM: BAITLUMI 160 30 4 6 0.17 0.6 0.261
SVM: BAITLHUMI 175 15 5 5 0.25 0.5 0.33
SVM: BAITI−LHUMI 171 19 4 6 0.24 0.6 0.342
SVM: BAITMI−LHUMI 176 14 4 6 0.3 0.6 0.4

TABLE 2
SVM Classification results

Algorithm trueNeg falsePos falseNeg truePos precision recall fmeasure
BAITNB 169 21 6 4 0.16 0.4 0.23
BAITBIPU 97 93 3 7 0.07 0.7 0.13

TABLE 3
Multinomial Naive Bayes Classification results

and analyze malicious behavior.
Note that in this study we do not address the

scenario where the threat is performed by multiple
people. The situation in which several people work
together to create a malicious attack is definitely a
complex threat to detect. It would be interesting to
extend our work to this type of scenario in the future.

4 CONCLUSION

Insider threat is a growing problem in many organi-
zations. Although recent episodes in the press such as
the leaks caused by the Wikileakers, Bradley Manning
and Edward Snowden, have made headlines in the
global press, the problem of insider threats has long
threatened companies in many different sectors[1].

In this paper, we first presented a detailed survey
of research on insider threat compiled from many
different disciplines. Specifically, we identified studies
of insider threat from social sciences (psychology, so-
ciology and criminology), from electrical engineering,
and of course, from computer science. All of these
diverse studies have much to offer one another.

After the detailed survey, we described our own
work on BAIT (Behavioral Analysis of Insider Threat).
We note that insider threat studies are bedeviled by
the following problems.

1) The number of malicious insiders compared to
normal honest users in most data sets is ex-
tremely small, leading to very highly imbal-
anced data sets. The use of supervised learning
algorithms on such data is highly challenging.

2) Past studies have mainly focused on how insider
attacks occurred in the past. Detecting known
past attacks does not pose a big problem. In
contrast, in BAIT, we are interested in new types
of attacks that might be used in the future.

3) There is a lack of good models of how insiders
may attack systems with new and hitherto un-
seen attacks.

In order to address these points and to really learn
models of how insiders may attack systems in the

future, we designed a one-person game (also called
an “open game”) and recruited 795 people to play
the game on Amazon Mechanical Turk — most of
whom were assigned the role of benign users while a
very small number were malicious. In keeping with the
imbalance in real data, we used a highly imbalanced
number of malicious insiders. We further assumed
that we know the role of only 100 subjects and that all
the rest of the data is either unlabeled data or reserved
for testing. We developed 7 algorithms (on top of
SVMs and Bayesian methods) and successively (au-
tomatically) built increasingly larger labeled data sets
by a suite of “bootstrapping” methods designed to
increase the size of the training data. We tested the ac-
curacy (precision and recall) of these algorithms. The
best algorithms have a recall of 0.6 with a precision
of 0.3 — a related algorithm has a higher recall (0.7)
but a much lower precision (0.07). The appropriate
algorithm to choose for a given organization would
depend on the precision the organization is willing to
tolerate.

More interestingly, our work casts light on the types
of properties that distinguish malicious insiders from
benign ones. Specifically:

1) Malicious insiders are more likely to be more ac-
tive than benign insiders (statistically significant
when p < 0.001, i.e. at the 99.9% level).

2) Malicious players fetch significantly more “sen-
sitive” information than benign players (statisti-
cally significant when p < 0.05, i.e. at the 95%
level).

3) Malicious players send significantly more data
out of their organization (statistically significant
when p < 0.001, i.e. at 99.9% level) than benign
insiders.

4) Malicious players fetched significantly less “un-
classified” data (statistically significant when
p < 0.05, i.e. at 95% level) than benign players.

In addition, our findings only slightly confirm two
prior results. The hypothesis that malicious players
save more data on removable media (e.g. USB sticks
or CDs) is true in our game data, but is without

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 23

statistical significance. Likewise, the hypothesis that
malicious users edited data less than benign ones was
also empirically observed, but not at a statistically
valid level.

We note that past work has highlighted the psy-
chological aspects of insider threat — but few works
seem to have rigidly tested, even in a synthetic envi-
ronment, the use of natural language processing for
extracting symptoms that are associated with insider
threat. Future work may well use sentiment analysis
techniques [93], [94]. Merging psychological insights,
natural language processing techniques with behav-
ioral signatures may well be an important direction
for future work on insider threat.
Acknowledgement. Some authors may have
been supported by ARO grants W911NF0910206,
W911NF1160215, W911NF1110344, W911NF1410358,
an ARO/Penn State MURI award, ONR grant
N000140910685, Maryland Procurement Office
Contract No. H98230-14-C-0137 and Maafat.

REFERENCES

[1] M. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, and
A. Moore, “Insider threat study: Illicit cyber activity in the
banking and finance sector,” US Secret Service and CERT Co-
ordination Center/Software Engineering Institute: Philadelphia, PA,
p. 25, 2004.

[2] S. L. Pfleeger and S. J. Stolfo, “Addressing the insider threat,”
Security & Privacy, IEEE, vol. 7, no. 6, pp. 10–13, 2009.

[3] G. Fyffe, “Addressing the insider threat,” Network Security, vol.
2008, no. 3, pp. 11–14, 2008.

[4] C. P. Pfleeger, “Reflections on the insider threat,” in Insider
Attack and Cyber Security. Springer, 2008, pp. 5–16.

[5] M. A. Maloof and G. D. Stephens, “ELICIT: A system for de-
tecting insiders who violate need-to-know,” in Recent Advances
in Intrusion Detection. Springer, 2007, pp. 146–166.

[6] D. Caputo, M. Maloof, and G. Stephens, “Detecting insider
theft of trade secrets,” Security & Privacy, IEEE, vol. 7, no. 6,
pp. 14–21, 2009.

[7] M. Salem, S. Hershkop, and S. Stolfo, “A survey of insider
attack detection research,” in Insider Attack and Cyber Security,
ser. Advances in Information Security, S. Stolfo, S. Bellovin,
A. Keromytis, S. Hershkop, S. Smith, and S. Sinclair, Eds.
Springer US, 2008, vol. 39, pp. 69–90. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-77322-3 5

[8] I. Steinwart and A. Christmann, Support vector machines.
Springer, 2008.

[9] T. E. Senator, H. G. Goldberg, A. Memory, W. T. Young,
B. Rees, R. Pierce, D. Huang, M. Reardon, D. A. Bader,
E. Chow, I. Essa, J. Jones, V. Bettadapura, D. H. Chau,
O. Green, O. Kaya, A. Zakrzewska, E. Briscoe, R. I. L.
Mappus, R. McColl, L. Weiss, T. G. Dietterich, A. Fern, W.-K.
Wong, S. Das, A. Emmott, J. Irvine, J.-Y. Lee, D. Koutra,
C. Faloutsos, D. Corkill, L. Friedland, A. Gentzel, and
D. Jensen, “Detecting insider threats in a real corporate
database of computer usage activity,” in Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’13. New York,
NY, USA: ACM, 2013, pp. 1393–1401. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2488213

[10] G. Magklaras and S. Furnell, “Insider threat prediction tool:
Evaluating the probability of it misuse,” Computers & Security,
vol. 21, no. 1, pp. 62–73, 2001.

[11] J. Myers, M. R. Grimaila, and R. F. Mills, “Towards insider
threat detection using web server logs,” in Proceedings of the 5th
Annual Workshop on Cyber Security and Information Intelligence
Research: Cyber Security and Information Intelligence Challenges
and Strategies. ACM, 2009, p. 54.

[12] G. Jabbour and D. A. Menasce, “The insider threat security
architecture: a framework for an integrated, inseparable, and
uninterrupted self-protection mechanism,” in Computational
Science and Engineering, 2009. CSE’09. International Conference
on, vol. 3. IEEE, 2009, pp. 244–251.

[13] M. Bishop, S. Engle, S. Peisert, S. Whalen, and C. Gates, “We
have met the enemy and he is us,” in Proceedings of the 2008
workshop on New security paradigms, ser. NSPW ’08, 2008, pp.
1–12.

[14] M. Bishop, S. Engle, D. A. Frincke, C. Gates, F. L. Greitzer,
S. Peisert, and S. Whalen, “A risk management approach to the
insider threat,” in Insider Threats in Cyber Security. Springer,
2010, pp. 115–137.

[15] J. Hunker and C. W. Probst, “Insiders and insider threatsan
overview of definitions and mitigation techniques,” Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, vol. 2, no. 1, pp. 4–27, 2011.

[16] S. Sinclair and S. W. Smith, “Preventative directions for insider
threat mitigation via access control,” in Insider Attack and Cyber
Security. Springer, 2008, pp. 165–194.

[17] E. E. Schultz, “A framework for understanding and predicting
insider attacks,” Computers & Security, vol. 21, no. 6, pp. 526–
531, 2002.

[18] B. Wood, “An insider threat model for adversary simulation,”
SRI International, Research on Mitigating the Insider Threat to
Information Systems, vol. 2, pp. 1–3, 2000.

[19] M. Warkentin and R. Willison, “Behavioral and policy issues
in information systems security: the insider threat,” European
Journal of Information Systems, vol. 18, no. 2, p. 101, 2009.

[20] R. Willison and M. Warkentin, “Motivations for employee
computer crime: understanding and addressing workplace
disgruntlement through the application of organisational jus-
tice,” in Proceedings of the IFIP TC8 International Workshop on
Information Systems Security Research. International Federation
for Information Processing, 2009, pp. 127–144.

[21] C. Colwill, “Human factors in information security: The in-
sider threat who can you trust these days?” Information
Security Technical Report, vol. 14, no. 4, pp. 186 – 196, 2009,
¡ce:title¿Human Factors in Information Security¡/ce:title¿.

[22] F. L. Greitzer and D. A. Frincke, “Combining traditional cyber
security audit data with psychosocial data: towards predictive
modeling for insider threat mitigation,” in Insider Threats in
Cyber Security. Springer, 2010, pp. 85–113.

[23] E. Cole and S. Ring, Insider Threat: Protecting the Enterprise
from Sabotage, Spying, and Theft: Protecting the Enterprise from
Sabotage, Spying, and Theft. Syngress, 2005.

[24] F. L. Greitzer, L. J. Kangas, C. F. Noonan, A. C. Dalton,
and R. E. Hohimer, “Identifying at-risk employees: Modeling
psychosocial precursors of potential insider threats,” in System
Science (HICSS), 2012 45th Hawaii International Conference on.
IEEE, 2012, pp. 2392–2401.

[25] M. Theoharidou, S. Kokolakis, M. Karyda, and E. Kiountouzis,
“The insider threat to information systems and the effective-
ness of iso17799,” Computers & Security, vol. 24, no. 6, pp. 472–
484, 2005.

[26] D. W. Straub and R. J. Welke, “Coping with systems risk:
security planning models for management decision making,”
Mis Quarterly, pp. 441–469, 1998.

[27] J. Lee and Y. Lee, “A holistic model of computer abuse within
organizations,” Information management & computer security,
vol. 10, no. 2, pp. 57–63, 2002.

[28] W. F. Skinner and A. M. Fream, “A social learning theory
analysis of computer crime among college students,” Journal
of Research in Crime and Delinquency, vol. 34, no. 4, pp. 495–518,
1997.

[29] R. C. Hollinger, “Crime by computer: Correlates of software
piracy and unauthorized account access,” Security Journal,
vol. 4, no. 1, pp. 2–12, 1993.

[30] I. Ajzen, “Perceived behavioral control, self-efficacy, locus of
control, and the theory of planned behavior1,” Journal of applied
social psychology, vol. 32, no. 4, pp. 665–683, 2002.

[31] R. Willison, “Understanding and addressing criminal oppor-
tunity: the application of situational crime prevention to is
security,” Journal of Financial Crime, vol. 7, no. 3, pp. 201–210,
2000.

[32] I. J. Martinez-Moyano, E. Rich, S. Conrad, D. F. Andersen,
and T. R. Stewart, “A behavioral theory of insider-threat risks:

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 24

A system dynamics approach,” ACM Transactions on Modeling
and Computer Simulation (TOMACS), vol. 18, no. 2, p. 7, 2008.

[33] J. A. Swets, “The relative operating characteristic in psychol-
ogy,” Science, vol. 182, no. 4116, pp. 990–1000, 1973.

[34] J. A. Swets, R. M. Dawes, and J. Monahan, “Psychological
science can improve diagnostic decisions,” Psychological science
in the public interest, vol. 1, no. 1, pp. 1–26, 2000.

[35] I. J. Martinez-Moyano, S. H. Conrad, and D. F. Andersen,
“Modeling behavioral considerations related to information
security,” Computers & Security, vol. 30, no. 67, pp. 397 – 409,
2011.

[36] C. W. Probst and J. Hunker, “The risk of risk analysis and its
relation to the economics of insider threats,” in Economics of
information security and privacy. Springer, 2010, pp. 279–299.

[37] A. Patcha and J.-M. Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological trends,”
Computer Networks, vol. 51, no. 12, pp. 3448 – 3470, 2007.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S138912860700062X

[38] A. Liu, C. Martin, T. Hetherington, and S. Matzner, “A com-
parison of system call feature representations for insider threat
detection,” in Information Assurance Workshop, 2005. IAW’05.
Proceedings from the Sixth Annual IEEE SMC. IEEE, 2005, pp.
340–347.

[39] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion de-
tection using sequences of system calls,” Journal of computer
security, vol. 6, no. 3, pp. 151–180, 1998.

[40] Y. Liao and V. R. Vemuri, “Using text categorization tech-
niques for intrusion detection.” in USENIX Security Sympo-
sium, vol. 12, 2002.

[41] A. Liu, C. E. Martin, T. Hetherington, and S. Matzner, “Ai
lessons learned from experiments in insider threat detection.”
in AAAI Spring Symposium: What Went Wrong and Why:
Lessons from AI Research and Applications. AAAI, 2006, pp.
49–55. [Online]. Available: http://dblp.uni-trier.de/db/conf/
aaaiss/aaaiss2006-8.html#LiuMHM06

[42] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory
& practice. Access Online via Elsevier, 2004.

[43] D. Barbará, J. Couto, S. Jajodia, and N. Wu, “Adam: A testbed
for exploring the use of data mining in intrusion detection,”
SIGMOD Rec., vol. 30, no. 4, pp. 15–24, dec 2001. [Online].
Available: http://doi.acm.org/10.1145/604264.604268

[44] D. E. Denning, “An intrusion-detection model,” Software En-
gineering, IEEE Transactions on, no. 2, pp. 222–232, 1987.

[45] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller,
S. Hershkop, and J. Zhang, “Real time data mining-based
intrusion detection,” in DARPA Information Survivability Con-
ference & Exposition II, 2001. DISCEX’01. Proceedings, vol. 1.
IEEE, 2001, pp. 89–100.

[46] M. Albanese, C. Molinaro, F. Persia, A. Picariello, and V. Sub-
rahmanian, “Finding unexplained activities in video,” in Pro-
ceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Two. AAAI Press, 2011,
pp. 1628–1634.

[47] ——, “Discovering the top-k” unexplained” sequences in time-
stamped observation data,” IEEE Transactions on Knowledge and
Data Engineering, 2013.

[48] R. Erbacher, S. Jajodia, C. Molinaro, F. Persia, A. Picariello,
G. Sperli, and V. Subrahmanian, “Recognizing unexplained be-
havior in network traffic,” in Network Science and Cybersecurity
(ed. R.E. Pino). Springer Science & Business, 2014, p. 39.

[49] J. Shavlik and M. Shavlik, “Selection, combination, and
evaluation of effective software sensors for detecting abnormal
computer usage,” in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’04. New York, NY, USA: ACM, 2004,
pp. 276–285. [Online]. Available: http://doi.acm.org/10.1145/
1014052.1014084

[50] N. Littlestone, “Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm,” Mach. Learn.,
vol. 2, no. 4, pp. 285–318, Apr. 1988. [Online]. Available:
http://dx.doi.org/10.1023/A:1022869011914

[51] A. Richardson, G. A. Kaminka, and S. Kraus, “Cubs: Mul-
tivariate sequence classification using bounded z-score with
sampling,” in ICDM Workshops, 2010, pp. 72–79.

[52] I. Ray and N. Poolsapassit, “Using attack trees to identify
malicious attacks from authorized insiders,” in Computer Secu-

rity ESORICS 2005, ser. Lecture Notes in Computer Science,
S. Vimercati, P. Syverson, and D. Gollmann, Eds. Springer
Berlin Heidelberg, 2005, vol. 3679, pp. 231–246.

[53] W. Young, H. Goldberg, A. Memory, J. Sartain, and T. Senator,
“Use of domain knowledge to detect insider threats in com-
puter activities,” in Security and Privacy Workshops (SPW), 2013
IEEE, 2013, pp. 60–67.

[54] K. Nance and R. Marty, “Identifying and visualizing the
malicious insider threat using bipartite graphs,” in System
Sciences (HICSS), 2011 44th Hawaii International Conference on.
IEEE, 2011, pp. 1–9.

[55] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus,
and Y. Vardi, “Computer intrusion: Detecting masquerades,”
Statistical Science, pp. 58–74, 2001.

[56] L. Spitzner, “Honeytokens: The other honeypot,” 2003.
[57] ——, Honeypots: tracking hackers. Addison-Wesley Reading,

2003, vol. 1.
[58] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver,

“The use of honeynets to detect exploited systems across large
enterprise networks,” in Information Assurance Workshop, 2003.
IEEE Systems, Man and Cybernetics Society. IEEE, 2003, pp.
92–99.

[59] A. Kołcz, A. Chowdhury, and J. Alspector, “The impact of
feature selection on signature-driven spam detection,” in Pro-
ceedings of the 1st Conference on Email and Anti-Spam (CEAS-
2004), 2004.

[60] S. Muhlbach, M. Brunner, C. Roblee, and A. Koch, “Mal-
cobox: Designing a 10 gb/s malware collection honeypot using
reconfigurable technology,” in Field Programmable Logic and
Applications (FPL), 2010 International Conference on. IEEE, 2010,
pp. 592–595.

[61] B. McCarty, “Automated identity theft,” Security & Privacy,
IEEE, vol. 1, no. 5, pp. 89–92, 2003.

[62] L. Spitzner, “Honeypots: Catching the insider threat,” in Com-
puter Security Applications Conference, 2003. Proceedings. 19th
Annual. IEEE, 2003, pp. 170–179.

[63] B. M. Bowen, M. Ben Salem, S. Hershkop, A. D. Keromytis,
and S. J. Stolfo, “Designing host and network sensors to
mitigate the insider threat,” Security & Privacy, IEEE, vol. 7,
no. 6, pp. 22–29, 2009.

[64] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor,
and J. C. Platt, “Support vector method for novelty detection.”
in NIPS, vol. 12, 1999, pp. 582–588.

[65] M. Kandias, A. Mylonas, N. Virvilis, M. Theoharidou, and
D. Gritzalis, “An insider threat prediction model,” in Trust,
Privacy and Security in Digital Business. Springer, 2010, pp.
26–37.

[66] R. Chinchani, A. Iyer, H. Q. Ngo, and S. Upadhyaya, “Towards
a theory of insider threat assessment,” in Dependable Systems
and Networks, 2005. DSN 2005. Proceedings. International Confer-
ence on. IEEE, 2005, pp. 108–117.

[67] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia, “Multiple coor-
dinated views for network attack graphs,” in Visualization for
Computer Security, 2005.(VizSEC 05). IEEE Workshop on. IEEE,
2005, pp. 99–106.

[68] W. Eberle, J. Graves, and L. Holder, “Insider threat detection
using a graph-based approach,” Journal of Applied Security
Research, vol. 6, no. 1, pp. 32–81, 2010.

[69] P. Parveen, J. Evans, B. Thuraisingham, K. Hamlen, and
L. Khan, “Insider threat detection using stream mining and
graph mining,” in Privacy, security, risk and trust (passat),
2011 ieee third international conference on and 2011 ieee third
international conference on social computing (socialcom), 2011, pp.
1102–1110.

[70] P. Parveen, Z. Weger, B. Thuraisingham, K. Hamlen, and
L. Khan, “Supervised learning for insider threat detection us-
ing stream mining,” in Tools with Artificial Intelligence (ICTAI),
2011 23rd IEEE International Conference on, 2011, pp. 1032–1039.

[71] S. Jajodia, A. K. Ghosh, V. Subrahmanian, V. Swarup, C. Wang,
and X. S. Wang, Moving Target Defense II: Application of Game
Theory and Adversarial Modeling. Springer, 2012, vol. 100.

[72] J. Pita, M. Jain, M. Tambe, F. Ordóñez, and S. Kraus, “Robust
solutions to stackelberg games: Addressing bounded rational-
ity and limited observations in human cognition,” Artif. Intell.,
vol. 174, no. 15, pp. 1142–1171, 2010.

[73] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu,
“A survey of game theory as applied to network security,” in

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 25

System Sciences (HICSS), 2010 43rd Hawaii International Confer-
ence on. IEEE, 2010, pp. 1–10.

[74] T. Alpcan and T. Basar, “A game theoretic approach to decision
and analysis in network intrusion detection,” in Decision and
Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 3.
IEEE, 2003, pp. 2595–2600.

[75] D. Liu, X. Wang, and J. Camp, “Game-theoretic modeling
and analysis of insider threats,” International Journal of Critical
Infrastructure Protection, vol. 1, no. 0, pp. 75 – 80, 2008.

[76] E. Rich, I. J. Martinez-Moyano, S. Conrad, D. M. Cappelli,
A. P. Moore, T. J. Shimeall, D. F. Andersen, J. J. Gonzalez,
R. J. Ellison, H. F. Lipson et al., “Simulating insider cyber-
threat risks: A model-based case and a case-based model,”
in Proceedings of the 23rd International Conference of the System
dynamics Society, 2005, pp. 17–21.

[77] S. Kraus, P. Hoz-Weiss, J. Wilkenfeld, D. R. Andersen, and
A. Pate, “Resolving crises through automated bilateral nego-
tiations,” Artificial Intelligence, vol. 172, no. 1, pp. 1–18, 2008.

[78] A. Rosenfeld, I. Zuckerman, A. Azaria, and S. Kraus, “Com-
bining psychological models with machine learning to better
predict peoples decisions,” Synthese, vol. 189, no. 1, pp. 81–93,
2012.

[79] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and M. Tambe,
“Analyzing the effectiveness of adversary modeling in security
games,” in Proc. of AAAI, 2013.

[80] I. Kantzavelou and S. Katsikas, “A game-based intrusion de-
tection mechanism to confront internal attackers,” Computers
& Security, vol. 29, no. 8, pp. 859 – 874, 2010.

[81] R. Yang, A. X. Jiang, M. Tambe, and F. Ordóñez, “Scaling-
up security games with boundedly rational adversaries: A
cutting-plane approach,” in Proc. of IJCAI, 2013.

[82] K. Tang, M. Zhao, and M. Zhou, “Cyber insider threats situ-
ation awareness using game theory and information fusion-
based user behavior predicting algorithm,” Journal of Informa-
tion & Computational Science, vol. 8, no. 3, pp. 529–545, 2011.

[83] K. P. Murphy, “Dynamic bayesian networks: representation,
inference and learning,” Ph.D. dissertation, University of Cal-
ifornia, 2002.

[84] N. Zhang, W. Yu, X. Fu, and S. K. Das, “Maintaining de-
fender’s reputation in anomaly detection against insider at-
tacks,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 40, no. 3, pp. 597–611, 2010.

[85] X. Zhu, “Semi-supervised learning literature survey,” Com-
puter Sciences, University of Wisconsin-Madison, Tech. Rep.
1530, 2008.

[86] H. He and E. Garcia, “Learning from imbalanced data,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 21, no. 9,
pp. 1263–1284, 2009.

[87] G. M. Weiss, “Mining with rarity: a unifying framework,”
ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 7–19,
2004.

[88] B. Liu, W. S. Lee, P. S. Yu, and X. Li, “Partially supervised
classification of text documents,” in ICML, vol. 2. Citeseer,
2002, pp. 387–394.

[89] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multi-
nomial naive bayes for text categorization revisited,” in AI
2004: Advances in Artificial Intelligence. Springer, 2005, pp.
488–499.

[90] K. Nigam, A. McCallum, and T. Mitchell, “Semi-supervised
text classification using em,” Semi-Supervised Learning, pp. 33–
56, 2006.

[91] Amazon, “Mechanical Turk services,”
http://www.mturk.com/, 2013.

[92] G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running exper-
iments on Amazon Mechanical Turk,” Judgment and Decision
Making, vol. 5, no. 5, 2010.

[93] F. Benamara, C. Cesarano, A. Picariello, D. R. Recupero, and
V. S. Subrahmanian, “Sentiment analysis: Adjectives and ad-
verbs are better than adjectives alone.” in ICWSM, 2007.

[94] V. S. Subrahmanian and D. Reforgiato, “Ava: Adjective-verb-
adverb combinations for sentiment analysis,” Intelligent Sys-
tems, IEEE, vol. 23, no. 4, pp. 43–50, 2008.

